Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Handb Exp Pharmacol ; 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37495851

RESUMEN

Adrenoceptors (ARs) throughout the brain are stimulated by noradrenaline originating mostly from neurons of the locus coeruleus, a brainstem nucleus that is ostensibly the earliest to show detectable pathology in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. The α1-AR, α2-AR, and ß-AR subtypes expressed in target brain regions and on a range of cell populations define the physiological responses to noradrenaline, which includes activation of cognitive function in addition to modulation of neurometabolism, cerebral blood flow, and neuroinflammation. As these heterocellular functions are critical for maintaining brain homeostasis and neuronal health, combating the loss of noradrenergic tone from locus coeruleus degeneration may therefore be an effective treatment for both cognitive symptoms and disease modification in neurodegenerative indications. Two pharmacologic approaches are receiving attention in recent clinical studies: preserving noradrenaline levels (e.g., via reuptake inhibition) and direct activation of target adrenoceptors. Here, we review the expression and role of adrenoceptors in the brain, the preclinical studies which demonstrate that adrenergic stimulation can support cognitive function and cerebral health by reversing the effects of noradrenaline depletion, and the human data provided by pharmacoepidemiologic analyses and clinical trials which together identify adrenoceptors as promising targets for the treatment of neurodegenerative disease.

2.
Proc Natl Acad Sci U S A ; 117(50): 31824-31831, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257561

RESUMEN

The ß2 adrenergic receptor (ß2AR) is an archetypal G protein coupled receptor (GPCR). One structural signature of GPCR activation is a large-scale movement (ca. 6 to 14 Å) of transmembrane helix 6 (TM6) to a conformation which binds and activates a cognate G protein. The ß2AR exhibits a low level of agonist-independent G protein activation. The structural origin of this basal activity and its suppression by inverse agonists is unknown but could involve a unique receptor conformation that promotes G protein activation. Alternatively, a conformational selection model proposes that a minor population of the canonical active receptor conformation exists in equilibrium with inactive forms, thus giving rise to basal activity of the ligand-free receptor. Previous spin-labeling and fluorescence resonance energy transfer experiments designed to monitor the positional distribution of TM6 did not detect the presence of the active conformation of ligand-free ß2AR. Here we employ spin-labeling and pressure-resolved double electron-electron resonance spectroscopy to reveal the presence of a minor population of unliganded receptor, with the signature outward TM6 displacement, in equilibrium with inactive conformations. Binding of inverse agonists suppresses this population. These results provide direct structural evidence in favor of a conformational selection model for basal activity in ß2AR and provide a mechanism for inverse agonism. In addition, they emphasize 1) the importance of minor populations in GPCR catalytic function; 2) the use of spin-labeling and variable-pressure electron paramagnetic resonance to reveal them in a membrane protein; and 3) the quantitative evaluation of their thermodynamic properties relative to the inactive forms, including free energy, partial molar volume, and compressibility.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Receptores Adrenérgicos beta 2/ultraestructura , Modelos Moleculares , Presión , Conformación Proteica en Hélice alfa , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Termodinámica
3.
Nature ; 535(7610): 182-6, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27362234

RESUMEN

G-protein-coupled receptors (GPCRs) remain the primary conduit by which cells detect environmental stimuli and communicate with each other. Upon activation by extracellular agonists, these seven-transmembrane-domain-containing receptors interact with heterotrimeric G proteins to regulate downstream second messenger and/or protein kinase cascades. Crystallographic evidence from a prototypic GPCR, the ß2-adrenergic receptor (ß2AR), in complex with its cognate G protein, Gs, has provided a model for how agonist binding promotes conformational changes that propagate through the GPCR and into the nucleotide-binding pocket of the G protein α-subunit to catalyse GDP release, the key step required for GTP binding and activation of G proteins. The structure also offers hints about how G-protein binding may, in turn, allosterically influence ligand binding. Here we provide functional evidence that G-protein coupling to the ß2AR stabilizes a 'closed' receptor conformation characterized by restricted access to and egress from the hormone-binding site. Surprisingly, the effects of G protein on the hormone-binding site can be observed in the absence of a bound agonist, where G-protein coupling driven by basal receptor activity impedes the association of agonists, partial agonists, antagonists and inverse agonists. The ability of bound ligands to dissociate from the receptor is also hindered, providing a structural explanation for the G-protein-mediated enhancement of agonist affinity, which has been observed for many GPCR­G-protein pairs. Our data also indicate that, in contrast to agonist binding alone, coupling of a G protein in the absence of an agonist stabilizes large structural changes in a GPCR. The effects of nucleotide-free G protein on ligand-binding kinetics are shared by other members of the superfamily of GPCRs, suggesting that a common mechanism may underlie G-protein-mediated enhancement of agonist affinity.


Asunto(s)
Sitio Alostérico , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Antagonistas de Receptores Adrenérgicos beta 2/metabolismo , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico/efectos de los fármacos , Subunidades alfa de la Proteína de Unión al GTP Gs/farmacología , Guanina/metabolismo , Guanina/farmacología , Humanos , Cinética , Ligandos , Modelos Moleculares , Unión Proteica/efectos de los fármacos , Conformación Proteica/efectos de los fármacos , Receptores Adrenérgicos beta 2/inmunología , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/farmacología
4.
Front Mol Biosci ; 10: 1214102, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664183

RESUMEN

Noradrenergic projections from the brainstem locus coeruleus drive arousal, attentiveness, mood, and memory, but specific adrenoceptor (AR) function across the varied brain cell types has not been extensively characterized, especially with agonists. This study reports a pharmacological analysis of brain AR function, offering insights for innovative therapeutic interventions that might serve to compensate for locus coeruleus decline, known to develop in the earliest phases of neurodegenerative diseases. First, ß-AR agonist activities were measured in recombinant cell systems and compared with those of isoprenaline to generate Δlog(Emax/EC50) values, system-independent metrics of agonist activity, that, in turn, provide receptor subtype fingerprints. These fingerprints were then used to assess receptor subtype expression across human brain cell systems and compared with Δlog(Emax/EC50) values arising from ß-arrestin activation or measurements of cAMP response desensitization to assess the possibility of ligand bias among ß-AR agonists. Agonist activity profiles were confirmed to be system-independent and, in particular, revealed ß2-AR functional expression across several human brain cell types. Broad ß2-AR function observed is consistent with noradrenergic tone arising from the locus coeruleus exerting heterocellular neuroexcitatory and homeostatic influence. Notably, Δlog(Emax/EC50) measurements suggest that tested ß-AR agonists do not show ligand bias as it pertains to homologous receptor desensitization in the system examined. Δlog(Emax/EC50) agonist fingerprinting is a powerful means of assessing receptor subtype expression regardless of receptor expression levels or assay readout, and the method may be applicable to future use for novel ligands and tissues expressing any receptor with available reference agonists.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA