Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Methods ; 20(2): 284-294, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36690741

RESUMEN

Cryo-electron tomograms capture a wealth of structural information on the molecular constituents of cells and tissues. We present DeePiCt (deep picker in context), an open-source deep-learning framework for supervised segmentation and macromolecular complex localization in cryo-electron tomography. To train and benchmark DeePiCt on experimental data, we comprehensively annotated 20 tomograms of Schizosaccharomyces pombe for ribosomes, fatty acid synthases, membranes, nuclear pore complexes, organelles, and cytosol. By comparing DeePiCt to state-of-the-art approaches on this dataset, we show its unique ability to identify low-abundance and low-density complexes. We use DeePiCt to study compositionally distinct subpopulations of cellular ribosomes, with emphasis on their contextual association with mitochondria and the endoplasmic reticulum. Finally, applying pre-trained networks to a HeLa cell tomogram demonstrates that DeePiCt achieves high-quality predictions in unseen datasets from different biological species in a matter of minutes. The comprehensively annotated experimental data and pre-trained networks are provided for immediate use by the community.


Asunto(s)
Mitocondrias , Ribosomas , Humanos , Células HeLa , Tomografía con Microscopio Electrónico/métodos , Retículo Endoplásmico , Procesamiento de Imagen Asistido por Computador/métodos
2.
Elife ; 102021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34723797

RESUMEN

Bacteria must balance the different needs for substrate assimilation, growth functions, and resilience in order to thrive in their environment. Of all cellular macromolecules, the bacterial proteome is by far the most important resource and its size is limited. Here, we investigated how the highly versatile 'knallgas' bacterium Cupriavidus necator reallocates protein resources when grown on different limiting substrates and with different growth rates. We determined protein quantity by mass spectrometry and estimated enzyme utilization by resource balance analysis modeling. We found that C. necator invests a large fraction of its proteome in functions that are hardly utilized. Of the enzymes that are utilized, many are present in excess abundance. One prominent example is the strong expression of CBB cycle genes such as Rubisco during growth on fructose. Modeling and mutant competition experiments suggest that CO2-reassimilation through Rubisco does not provide a fitness benefit for heterotrophic growth, but is rather an investment in readiness for autotrophy.


Asunto(s)
Cupriavidus necator/crecimiento & desarrollo , Cupriavidus necator/metabolismo , Proteoma/metabolismo , Procesos Autotróficos , Proteínas Bacterianas/biosíntesis , Dióxido de Carbono/metabolismo , Cupriavidus necator/enzimología , Procesos Heterotróficos , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo
3.
Phys Rev Lett ; 99(7): 076802, 2007 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-17930914

RESUMEN

Employing density-functional calculations we study single and double graphene layers on Si- and C-terminated 1x1-6H-SiC surfaces. We show that, in contrast with earlier assumptions, the first carbon layer is covalently bonded to the substrate and cannot be responsible for the graphene-type electronic spectrum observed experimentally. The characteristic spectrum of freestanding graphene appears with the second carbon layer, which exhibits a weak van der Waals bonding to the underlying structure. For Si-terminated substrate, the interface is metallic, whereas on C face it is semiconducting or semimetallic for single or double graphene coverage, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA