RESUMEN
Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P < 0·01) whilst increasing ACE expression within a physiological range (<1·8-fold at 48 h; P < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role.
Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Regulación de la Expresión Génica , Variación Genética , Proteínas Desacopladoras Mitocondriales/genética , Peptidil-Dipeptidasa A/genética , Transducción de Señal , Adolescente , Adulto , Alelos , Diabetes Mellitus Tipo 1/genética , Humanos , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
The catechol-O-methyltranferase (COMT) is one of the main enzymes that metabolise dopamine in the brain. The Val158Met polymorphism in the COMT gene (rs4680) causes a trimodal distribution of high (Val/Val), intermediate (Val/Met) and low (Met/Met) enzyme activity. We tested whether the Val158Met polymorphism is a modifier of the age at onset (AAO) in Parkinson's disease (PD). The rs4680 was genotyped in a total of 16 609 subjects from five independent cohorts of European and North American origin (5886 patients with PD and 10 723 healthy controls). The multivariate analysis for comparing PD and control groups was based on a stepwise logistic regression, with gender, age and cohort origin included in the initial model. The multivariate analysis of the AAO was a mixed linear model, with COMT genotype and gender considered as fixed effects and cohort and cohort-gender interaction as random effects. COMT genotype was coded as a quantitative variable, assuming a codominant genetic effect. The distribution of the COMT polymorphism was not significantly different in patients and controls (p=0.22). The Val allele had a significant effect on the AAO with a younger AAO in patients with the Val/Val (57.1±13.9, p=0.03) than the Val/Met (57.4±13.9) and the Met/Met genotypes (58.3±13.5). The difference was greater in men (1.9 years between Val/Val and Met/Met, p=0.007) than in women (0.2 years, p=0.81). Thus, the Val158Met COMT polymorphism is not associated with PD in the Caucasian population but acts as a modifier of the AAO in PD with a sexual dimorphism: the Val allele is associated with a younger AAO in men with idiopathic PD.
Asunto(s)
Catecol O-Metiltransferasa/genética , Enfermedad de Parkinson/genética , Polimorfismo de Nucleótido Simple/genética , Edad de Inicio , Anciano , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Factores SexualesRESUMEN
Retinal degenerative diseases, such as retinitis pigmentosa and Leber congenital amaurosis, are a leading cause of untreatable blindness with substantive impact on the quality of life of affected individuals and their families. Mouse mutants with retinal dystrophies have provided a valuable resource to discover human disease genes and helped uncover pathways critical for photoreceptor function. Here we show that the rd11 mouse mutant and its allelic strain, B6-JR2845, exhibit rapid photoreceptor dysfunction, followed by degeneration of both rods and cones. Using linkage analysis, we mapped the rd11 locus to mouse chromosome 13. We then identified a one-nucleotide insertion (c.420-421insG) in exon 3 of the Lpcat1 gene. Subsequent screening of this gene in the B6-JR2845 strain revealed a seven-nucleotide deletion (c.14-20delGCCGCGG) in exon 1. Both sequence changes are predicted to result in a frame-shift, leading to premature truncation of the lysophosphatidylcholine acyltransferase-1 (LPCAT1) protein. LPCAT1 (also called AYTL2) is a phospholipid biosynthesis/remodeling enzyme that facilitates the conversion of palmitoyl-lysophosphatidylcholine to dipalmitoylphosphatidylcholine (DPPC). The analysis of retinal lipids from rd11 and B6-JR2845 mice showed substantially reduced DPPC levels compared with C57BL/6J control mice, suggesting a causal link to photoreceptor dysfunction. A follow-up screening of LPCAT1 in retinitis pigmentosa and Leber congenital amaurosis patients did not reveal any obvious disease-causing mutations. Previously, LPCAT1 has been suggested to be critical for the production of lung surfactant phospholipids and biosynthesis of platelet-activating factor in noninflammatory remodeling pathway. Our studies add another dimension to an essential role for LPCAT1 in retinal photoreceptor homeostasis.
Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneración Retiniana/genética , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Animales , Secuencia de Bases , Northern Blotting , Cromatografía Líquida de Alta Presión , Mapeo Cromosómico , Análisis Mutacional de ADN , Humanos , Immunoblotting , Amaurosis Congénita de Leber/genética , Lípidos/análisis , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Endogámicos , Ratones Mutantes , Microscopía Electrónica de Transmisión , Fosfatidilcolinas/análisis , Células Fotorreceptoras de Vertebrados/química , Células Fotorreceptoras de Vertebrados/ultraestructura , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Retinitis Pigmentosa/genética , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
PURPOSE: To identify and functionally characterize the mutation responsible for autosomal dominant retinitis pigmentosa (adRP) in a large, six-generation French family. METHODS: Twenty individuals from this family participated in the genetic investigation. Six affected and 14 unaffected individuals from three-generations were available for linkage analysis using microsatellite markers flanking the rhodopsin (RHO) gene. A two-point logarithm of odds (LOD) score calculation was undertaken using GENEMARKER and MLINK software. Sanger sequencing of RHO was performed. Cellular localization of the mutant protein was performed by transforming SK-N-SH cells with pEGFP-N1-Rho, pEGFP-N1-Rho(P23H), and pEGFP-N1-Rho(c.614-622del). RESULTS: The proband had nyctalopia, visual field constriction, peripheral bone spicule pigmentation of the fundus, central acuity (6/24 RE; 6/12 LE) at 55 years of age. Linkage analysis of this family suggested RHO as a possible candidate since the flanking marker D3S1292 yielded a LOD score of 2.43 at θ=0. Cloning of an exon 3 PCR product and direct sequencing of single clones identified a novel deletion in the third exon of RHO, c.614-622del (p.Y206-F208del). The deleted mutant protein localized to the endoplasmic reticulum and formed inclusion bodies. CONCLUSIONS: This novel deletion in exon 3 of the RHO gene, c.614-622del results in a classical form of adRP in a multi-generation French family. Protein expression analyses confirmed that the deletion led to protein misfolding and suggest this is a class II mutation, similar to P23H, the most common class II mutation seen in North America.
Asunto(s)
Secuencia de Bases , Deficiencias en la Proteostasis/genética , Retinitis Pigmentosa/genética , Rodopsina/genética , Eliminación de Secuencia/genética , Población Blanca/genética , Adolescente , Estudios de Casos y Controles , Línea Celular , Exones , Femenino , Francia , Genes Dominantes , Ligamiento Genético , Humanos , Repeticiones de Microsatélite , Persona de Mediana Edad , Datos de Secuencia Molecular , Linaje , Plásmidos , Análisis de Secuencia de ADN , Transformación GenéticaRESUMEN
BACKGROUND: The health of the agricultural population has been previously explored, particularly in relation to the farming exposures and among professionally active individuals. However, few studies specifically focused on health and aging among elders retired from agriculture. Yet, this population faces the long-term effects of occupational exposures and multiple difficulties related to living and aging in rural area (limited access to shops, services, and practitioners). However, these difficulties may be counter-balanced by advantages related to healthier lifestyle, richer social support and better living environment. The general aim of the AMI cohort was to study health and aging in elderly farmers living in rural area through a multidisciplinary approach, with a main focus on dementia. METHODS/DESIGN: The study initially included 1 002 participants, randomly selected from the Farmer Health Insurance rolls. Selection criteria were: being 65 years and older; living in rural area in Gironde (South-Western France); being retired from agriculture after at least 20 years of activity and being affiliated to the Health Insurance under own name. The study started in 2007, with two follow-up visits over 5 years. Baseline visits were conducted at home by a neuropsychologist then by a geriatrician for all cases suspected of dementia, Parkinson's disease and depression (to confirm the diagnosis), and by a nurse for others. A large panel of data were collected through standardised questionnaires: complete neuropsychological assessment, material and social living environment, psychological transition to retirement, lifestyle (smoking, alcohol and diet), medications, disability in daily living, sensory impairments and some clinical measures (blood pressure, depression symptomatology, anxiety, visual test, anthropometry...). A blood sampling was performed with biological measurements and constitution of a biological bank, including DNA. Brain MRI were also performed on 316 of the participants. Finally, the three-year data on health-related reimbursements were extracted from the Health System database (medications, medical and paramedical consultations, biological examinations and medical devices), and the registered Long-Term Diseases (30 chronic diseases 100% covered by the Insurance System). DISCUSSION: AMI is the first French longitudinal study on health and aging set up in a population of elderly farmers living in rural area through a multidisciplinary approach.
Asunto(s)
Envejecimiento , Agricultura , Salud Rural/estadística & datos numéricos , Anciano , Demencia/epidemiología , Estudios de Seguimiento , Francia/epidemiología , Humanos , Estudios Interdisciplinarios , Estudios ProspectivosRESUMEN
PRPF8-retinitis pigmentosa is said to be severe but there has been no overview of phenotype across different mutations. We screened RP patients for PRPF8 mutations and identified three new missense mutations, including the first documented mutation outside exon 42 and the first de novo mutation. This brings the known RP-causing mutations in PRPF8 to nineteen. We then collated clinical data from new and published cases to determine an accurate prognosis for PRPF8-RP. Clinical data for 75 PRPF8-RP patients were compared, revealing that while the effect on peripheral retinal function is severe, patients generally retain good visual acuity in at least one eye until the fifth or sixth decade. We also noted that prognosis for PRPF8-RP differs with different mutations, with p.H2309P or p.H2309R having a worse prognosis than p.R2310K. This correlates with the observed difference in growth defect severity in yeast lines carrying the equivalent mutations, though such correlation remains tentative given the limited number of mutations for which information is available. The yeast phenotype is caused by lack of mature spliceosomes in the nucleus, leading to reduced RNA splicing function. Correlation between yeast and human phenotypes suggests that splicing factor RP may also result from an underlying splicing deficit.
Asunto(s)
Proteínas Portadoras/genética , Retinitis Pigmentosa/genética , Levaduras/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Mutación Missense , Fenotipo , Pronóstico , Proteínas de Unión al ARN , Retinitis Pigmentosa/patología , Adulto JovenRESUMEN
Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P < 0·01) whilst increasing ACE expression within a physiological range (<1·8-fold at 48 h; P < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role.
RESUMEN
PURPOSE: Usher syndrome is an autosomal recessive disease associating retinitis pigmentosa and neurosensory deafness. Three clinical types (USH1, USH2, USH3) and 11 mutated genes or loci have been described. Mutations in MYO7A and USH2A are responsible for about 40% and 60% of Usher syndromes type 1 and 2, respectively. These genes were screened in a series of patients suffering from Usher syndrome. METHODS: We performed SSCP screening of MYO7A in 12 unrelated patients suffering from Usher syndrome type 1 (USH1) and USH2A in 28 unrelated patients affected by Usher syndrome type 2 (USH2). RESULTS/CONCLUSIONS: Six mutations in MYO7A were found in five patients, including two novel mutations c.397C > G (His133Asp) and 1244-2A > G (Glu459Stop), accounting for 42% of our USH1 patients. Twelve mutations in USH2A were found in 11 patients, including four new mutations c.850delGA, c.1841-2A > G, c.3129insT, and c.3920C > G (Ser1307Stop), accounting for 39% of our USH2 patients
Asunto(s)
Proteínas de la Matriz Extracelular/genética , Pérdida Auditiva Sensorineural/genética , Mutación/genética , Miosinas/genética , Retinitis Pigmentosa/genética , Adolescente , Adulto , Niño , Análisis Mutacional de ADN , Dineínas , Humanos , Persona de Mediana Edad , Miosina VIIa , Reacción en Cadena de la Polimerasa , Polimorfismo Conformacional Retorcido-Simple , Sitios de Empalme de ARN/genética , SíndromeRESUMEN
To search for genes that could be involved in genetic disorders primarily involving the retina and the cochlea, we tried to identify mRNAs preferentially expressed in retina and cochlea and to establish their chromosomal localization. Two approaches were employed. First, a mouse subtracted library (retina + cochlea against liver + brain) was generated. Randomly selected cDNA clones were sequenced and compared to databases. Tissue expression of some of them was analyzed by RT-PCR. Using radiation hybrid cell lines, the mouse chromosomal localization was determined for those showing the highest level in the retina and the cochlea. Second, human Expressed Sequence Tags (ESTs) with preferential expression in the retina and the cochlea were searched for in databases, and chromosomal localization was also established. From 171 sequenced clones, 73 were classified as known genes (with 17 clones coding for 6 genes), 86 were homologous to ESTs, and 12 were unidentified. Of 108 selected clones, 22 (18.5%) had the highest level of expression in the retina and/or the cochlea, while expression was higher in another tissue or ubiquitous for 60 (55.5%) and 22 (20.4%) of them, respectively. By RT-PCR, one clone similar to the mouse Asic3 cDNA (proton-gated channel) was found mainly in the retina and cochlea, but its human ortholog was widely expressed. We selected 17 ESTs from the UniGene database with restricted expression including in the retina and cochlea. We mapped 10 of these ESTs as well as four mouse clones from the subtracted library. Some of them localized to morbid intervals. The combined information from expression analysis and chromosomal localization allowed for the identification of potential candidate genes for retinal diseases (CORD8, CORD9) and syndromic blindness/deafness/renal defects.
Asunto(s)
Cóclea/metabolismo , ARN Mensajero/genética , Retina/metabolismo , Animales , Mapeo Cromosómico , Bases de Datos Genéticas , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Biblioteca de Genes , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/biosíntesis , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
BACKGROUND: In older postmenopausal women, high levels of endogenous estrogen have been related to adverse health outcomes including ischemic arterial disease (IAD). Whether estrogen receptor-α (ESR1) and -ß (ESR2) polymorphisms modulate the effects of estrogens on IAD has not been investigated. METHODS: In the Three-City prospective cohort study among subjects older than 65 years, we used a case-cohort design in which plasma levels of total and bioavailable 17ß-estradiol were measured. After exclusion of postmenopausal women using hormone therapy, a random subcohort of 533 women and 105 incident cases of first IAD events over 4 years of follow-up were analyzed. Five common polymorphisms of ESR1 and ESR2 were genotyped. Hazard ratios (HRs) of IAD for a 1-SD increase in hormones levels by the genotypes were estimated from Cox models after adjustment for cardiovascular risk factors and a correction for multiple testing. We also investigated the role of hemostasis and inflammation as potential mediators. RESULTS: Neither estrogens nor IAD risk was significantly associated with estrogen receptor polymorphisms. Overall, IAD risk increased with total estradiol [HR1.40, 95% confidence interval (CI) 1.11-1.77]. Stratified analysis by genotypes showed that total estradiol was positively related to IAD risk in women with ESR1 rs9340799-AA genotype but not in women with the AG/GG genotype (HR 1.62, 95% CI 1.22-2.17 and HR 1.03, 95% CI 0.81-1.30, respectively; P for interaction <.05). An additional adjustment for hemostatic variables reduced the HR by about one third in women carrying the rs9340799-AA genotype (HR 1.41, 95% CI 1.06-1.90). CONCLUSION: The ESR1 rs9340799 genotype may modify the IAD risk related to high endogenous estrogens levels in older postmenopausal women. Hypercoagulability may act as a mediator.
Asunto(s)
Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/genética , Estradiol/sangre , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/genética , Posmenopausia/sangre , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Ciudades/epidemiología , Femenino , Francia/epidemiología , Genotipo , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Posmenopausia/genéticaRESUMEN
BACKGROUND: Telomere length is a heritable trait, and short telomere length has been associated with multiple chronic diseases. We investigated the relationship of relative leukocyte telomere length with cardiometabolic risk and performed the first genome-wide association study and meta-analysis to identify variants influencing relative telomere length in a population of Sikhs from South Asia. METHODS AND RESULTS: Our results revealed a significant independent association of shorter relative telomere length with type 2 diabetes mellitus and heart disease. Our discovery genome-wide association study (n=1616) was followed by stage 1 replication of 25 top signals (P<10(-6)) in an additional Sikhs (n=2397). On combined discovery and stage 1 meta-analysis (n= 4013), we identified a novel relative telomere length locus at chromosome 16q21 represented by an intronic variant (rs74019828) in the CSNK2A2 gene (ß=-0.38; P=4.5×10(-8)). We further tested 3 top variants by genotyping in UK cardiovascular disease (UKCVD) (whites n=2952) for stage 2. Next, we performed in silico replication of 139 top signals (P<10(-5)) in UK Twin, Nurses Heart Study, Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, and MD Anderson Cancer Controls (n=10 033) and joint meta-analysis (n=16 998). The observed signal in CSNK2A2 was confined to South Asians and could not be replicated in whites because of significant difference in allele frequencies (P<0.001). CSNK2A2 phosphorylates telomeric repeat binding factor 1 and plays an important role for regulation of telomere length homoeostasis. CONCLUSIONS: By identification of a novel signal in telomere pathway genes, our study provides new molecular insight into the underlying mechanism that may regulate telomere length and its association with human aging and cardiometabolic pathophysiology.
Asunto(s)
Quinasa de la Caseína II/genética , Diabetes Mellitus Tipo 2/enzimología , Leucocitos/metabolismo , Telómero/metabolismo , Adulto , Anciano , Pueblo Asiatico/genética , Quinasa de la Caseína II/metabolismo , Estudios de Cohortes , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , India , Leucocitos/enzimología , Masculino , Persona de Mediana Edad , Fosforilación , Polimorfismo de Nucleótido Simple , Religión , Adulto JovenRESUMEN
UNLABELLED: Cardiovascular disease and diabetes have been linked to shorter telomeres, but it is not yet clear which risk factors contribute to shorter telomeres in patients. Our aim was to examine whether pro-inflammatory conditioning, in combination or not with high glucose, result in a higher rate of telomere shortening during in vitro cellular ageing. Human fibroblasts from four donors were cultured for 90 days in: 1) medium lacking ascorbic acid only, 2) 10 mM buthionine sulphoximine (BSO) (pro-oxidant), 3) 25 mM D-glucose, 4) 1 ng/ml IL1B and 5) 25 mM D-glucose+1 ng/ml IL1B. Telomere length was measured with qPCR and intracellular reactive oxygen species (ROS) content and cell death with flow cytometry. Cultures treated with high glucose and BSO displayed a significantly lower growth rate, and cultures treated with IL1B showed a trend towards a higher growth rate, compared to the control [Glucose:0.14 PD/day, p<0.001, BSO: 0.11 PD/day, pâ=â0.006 and IL1B: 0.19 PD/day, pâ=â0.093 vs. CONTROL: 0.16 PD/day]. Telomere shortening with time was significantly accelerated in cultures treated with IL1B compared to the control [IL1B:-0.8%/day (95%CI:-1.1, -0.5) vs. CONTROL: -0.6%/day (95%CI:-0.8, -0.3), pâ=â0.012]. The hastening of telomere shortening by IL1B was only in part attenuated after adjustment for the number of cell divisions [IL1B:-4.1%/PD (95%CI:-5.7, -2.4) vs. CONTROL: -2.5%/PD (95%CI:-4.4, -0.7), pâ=â0.067]. The intracellular ROS content displayed 69% increase (pâ=â0.033) in BSO compared to the control. In aging fibroblasts, pro-inflammatory conditioning aggravates the shortening of telomeres, an effect which was only in part driven by increased cell turnover. High glucose alone did not result in greater production of ROS or telomere shortening.
Asunto(s)
Senescencia Celular , Glucosa/administración & dosificación , Inflamación/genética , Telómero , Secuencia de Bases , Muerte Celular , Células Cultivadas , Cartilla de ADN , ADN Mitocondrial/genética , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Humanos , Inflamación/metabolismo , Especies Reactivas de Oxígeno/metabolismoRESUMEN
BACKGROUND: Several genes implicated in high-density lipoprotein (HDL) metabolism have been reported to be associated with age-related macular degeneration (AMD). Furthermore, HDL transport the two carotenoids, lutein and zeaxanthin, which are highly suspected to play a key-role in the protection against AMD. The objective is to confirm the associations of HDL-related loci with AMD and to assess their associations with plasma lutein and zeaxanthin concentrations. METHODS: Alienor study is a prospective population-based study on nutrition and age-related eye diseases performed in 963 elderly residents of Bordeaux, France. AMD was graded according to the international classification, from non-mydriatic colour retinal photographs. Plasma lutein and zeaxanthin were determined by normal-phase high-performance liquid chromatography. The following polymorphisms were studied: rs493258 and rs10468017 (LIPC), rs3764261 (CETP), rs12678919 (LPL) and rs1883025 (ABCA1). RESULTS: After multivariate adjustment, the TT genotype of the LIPC rs493258 variant was significantly associated with a reduced risk for early and late AMD (OR=0.64, 95%CI: 0.41-0.99; p=0.049 and OR=0.26, 95%CI: 0.08-0.85; p=0.03, respectively), and with higher plasma zeaxanthin concentrations (p=0.03), while plasma lipids were not significantly different according to this SNP. Besides, the LPL variant was associated with early AMD (OR=0.67, 95%CI: 0.45-1.00; p=0.05) and both with plasma lipids and plasma lutein (p=0.047). Associations of LIPC rs10468017, CETP and ABCA1 polymorphisms with AMD did not reach statistical significance. CONCLUSION: These findings suggest that LIPC and LPL genes could both modify the risk for AMD and the metabolism of lutein and zeaxanthin.
Asunto(s)
Lipoproteínas HDL/genética , Luteína/sangre , Degeneración Macular/sangre , Degeneración Macular/genética , Xantófilas/sangre , Factores de Edad , Anciano , Anciano de 80 o más Años , Femenino , Genotipo , Humanos , Lipasa/genética , Lipoproteína Lipasa/genética , Masculino , Polimorfismo de Nucleótido Simple/genética , Estudios Prospectivos , ZeaxantinasRESUMEN
OBJECTIVE: To replicate the associations of leukocyte telomere length (LTL) with variants at four loci and to investigate their associations with coronary heart disease (CHD) and type II diabetes (T2D), in order to examine possible causal effects of telomere maintenance machinery on disease aetiology. METHODS: Four SNPs at three loci BICD1 (rs2630578 GγC), 18q12.2 (rs2162440 GγT), and OBFC1 (rs10786775 CγG, rs11591710 AγC) were genotyped in four studies comprised of 2353 subjects out of which 1148 had CHD and 566 T2D. Three SNPs (rs12696304 CγG, rs10936601G>T and rs16847897 GγC) at the TERC locus were genotyped in these four studies, in addition to an offspring study of 765 healthy students. For all samples, LTL had been measured using a real-time PCR-based method. RESULTS: Only one SNP was associated with a significant effect on LTL, with the minor allele G of OBFC1 rs10786775 SNP being associated with longer LTL (ß=0.029, P=0.04). No SNPs were significantly associated with CHD or T2D. For OBFC1 the haplotype carrying both rare alleles (rs10786775G and rs11591710C, haplotype frequency 0.089) was associated with lower CHD prevalence (OR: 0.77; 95% CI: 0.61-0.97; P= 0.03). The TERC haplotype GTC (rs12696304G, rs10936601T and rs16847897C, haplotype frequency 0.210) was associated with lower risk for both CHD (OR: 0.86; 95% CI: 0.75-0.99; P=0.04) and T2D (OR: 0.74; 95% CI: 0.61-0.91; P= 0.004), with no effect on LTL. Only the last association remained after adjusting for multiple testing. CONCLUSION: Of reported associations, only that between the OBFC1 rs10786775 SNP and LTL was confirmed, although our study has a limited power to detect modest effects. A 2-SNP OBFC1 haplotype was associated with higher risk of CHD, and a 3-SNP TERC haplotype was associated with both higher risk of CHD and T2D. Further work is required to confirm these results and explore the mechanisms of these effects.
Asunto(s)
Enfermedad Coronaria/genética , Leucocitos , Polimorfismo de Nucleótido Simple , ARN/genética , Telomerasa/genética , Homeostasis del Telómero/genética , Proteínas de Unión a Telómeros/genética , Telómero/genética , Anciano , Enfermedad Coronaria/metabolismo , Enfermedad Coronaria/patología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Femenino , Haplotipos , Humanos , Masculino , Persona de Mediana Edad , ARN/metabolismo , Factores de Riesgo , Telomerasa/metabolismo , Telómero/metabolismo , Proteínas de Unión a Telómeros/metabolismoRESUMEN
PURPOSE: The aim of this study was to report detailed genotype/phenotype correlation in two British autosomal dominant retinitis pigmentosa (adRP) families with recently described mutations in PRPF8. METHODS: Ten affected members from the two families (excluded for PRPF31 mutations) were assessed clinically. Seven subjects had fundus photography; some had electrophysiology, autofluorescence imaging, and visual field testing. Linkage analysis was performed from genomic DNA in one family. RNA was extracted from lymphocytes of the proband from both families, reverse transcribed into cDNA and subsequently screened for mutations in PRPF8. Segregation of mutations in each family was tested by direct genomic sequencing of the specific exons carrying the mutation. RESULTS: All affected members complained of nyctalopia with variable age of onset. In the first family, there was marked variation in the clinical phenotype among affected individuals ranging from severe rod-cone dystrophy to a 67-year-old patient with a normal retinal appearance and mild rod dysfunction on scotopic electroretinography (ERG). The second family demonstrated similar variability and a history of a nonpenetrant individual. Linkage analysis in the first family showed strong evidence for linkage to markers on chromosome 17p implicating PRPF8 as a candidate gene. A c.6353 C>T change causing a nonconservative missense mutation p.S2118F was found in exon 38 of PRPF8 by direct sequencing of the cDNA. The mutation c.6930G>C (p.R2310S) was found in the second family. CONCLUSIONS: This is the first report of marked intrafamilial variability associated with mutations in the PRPF8 gene, including incomplete penetrance. PRPF8 mutations should be suspected in patients with adRP and variable expressivity.
Asunto(s)
Proteínas Portadoras/genética , Mutación Missense , Retinitis Pigmentosa/genética , Adulto , Anciano , Anciano de 80 o más Años , Cromosomas Humanos Par 17/genética , Análisis Mutacional de ADN , Electrorretinografía , Exones/genética , Femenino , Angiografía con Fluoresceína , Genes Dominantes , Ligamiento Genético , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Ceguera Nocturna/genética , Linaje , Fenotipo , Células Fotorreceptoras de Vertebrados/fisiología , Reacción en Cadena de la Polimerasa , Proteínas de Unión al ARN , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/fisiopatología , Tomografía de Coherencia Óptica , Agudeza Visual/fisiología , Pruebas del Campo VisualRESUMEN
OBJECTIVE: High oxidative stress potentially leads to accelerated telomere shortening and consequent premature cell senescence, implicated in type 2 diabetes (T2D) development. Therefore, we studied the association of leukocyte telomere length (LTL) with the presence of T2D, as well as the effect on the patients' LTL of plasma oxidative stress and of variation in UCP2, a gene involved in the mitochondrial production of reactive oxygen species. METHODS: Mean LTL was determined in 569 Caucasian, 103 South Asian and 70 Afro-Caribbean T2D patients aged from 24 to 92 years, 81 healthy Caucasian male students aged from 18 to 28 years and 367 healthy Caucasian men aged from 40 to 61 years by real-time PCR. Plasma total antioxidant status (TAOS) was measured in the T2D patients by a photometric microassay. The patients were also genotyped for the UCP2 functional variants -866G>A and A55V. RESULTS: Afro-Carribeans had 510bp longer mean length compared to Caucasians (p<0.0001) and 500bp longer than South Asians (p=0.004). T2D subjects displayed shorter age-adjusted LTL compared to controls [6.94(6.8-7.03) vs. 7.72(7.53-7.9), p<0.001] with subjects in the middle and the lowest tertile of LTL having significantly higher odds ratios for T2D compared to those in the highest tertile [1.50(1.08-2.07) and 5.04(3.63-6.99), respectively, p<0.0001]. In the patients, LTL was correlated negatively with age (r=-0.18, p<0.0001) and positively with TAOS measures (r=0.12, p=0.01) after adjusting for age, while carriers of the UCP2 -866A allele had shorter age-adjusted LTL than common homozygotes [6.86(6.76-6.96)kb vs. 7.03(6.91-7.15)kb, p=0.04]. CONCLUSION: The present data suggest that shorter LTL is associated with the presence of T2D and this could be partially attributed to the high oxidative stress in these patients. The association of the UCP2 functional promoter variant with the LTL implies a link between mitochondrial production of reactive oxygen species and shorter telomere length in T2D.
Asunto(s)
Diabetes Mellitus Tipo 2/genética , Canales Iónicos/genética , Proteínas Mitocondriales/genética , Estrés Oxidativo/genética , Telómero/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Pueblo Asiatico/genética , Senescencia Celular , Estudios de Cohortes , Femenino , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Especies Reactivas de Oxígeno/metabolismo , Telómero/genética , Proteína Desacopladora 2 , Población Blanca/genética , Adulto JovenRESUMEN
Shorter telomeres have been reported in premature myocardial infarction (MI) patients. Our work aimed at confirming the association of shorter telomere with MI in two case-control studies and in familial hypercholesterolemia (FH) patients with coronary heart disease (CHD). The HIFMECH study compared 598 white male patients (<60 years) who survived a first MI and 653 age-matched controls from North and South Europe. Additionally, from the UK, 413 coronary artery bypass graft (CABG) patients and two groups of 367 and 94 FH patients, of whom 145 and 17 respectively had premature CHD, were recruited. Leukocyte telomere length (LTL) was measured using a real-time polymerase chain reaction-based method. In HIFMECH, LTL was significantly shorter in subjects from the North (7.99 kb, SD 4.51) compared to the South (8.27 kb, SD 4.14; p = 0.02) and in cases (7.85 kb, SD 4.01) compared to controls (8.04 kb, SD 4.46; p = 0.04). In the CABG study, LTL was significantly shorter (6.89 kb, SD 4.14) compared to the HIFMECH UK controls (7.53, SD 5.29; p = 0.007). In both samples of FH patients, LTL was shorter in those with CHD (overall 8.68 kb, SD 4.65) compared to the non-CHD subjects (9.23 kb, SD 4.83; p = 0.012). Apart from a consistent negative correlation with age, LTL was not associated across studies with any measured CHD risk factors. The present data confirms that subjects with CHD have shorter telomeres than controls and extends this to those with monogenic and polygenic forms of CHD.
Asunto(s)
Enfermedad Coronaria/genética , Leucocitos/patología , Infarto del Miocardio/genética , Telómero/patología , Factores de Edad , Estudios de Casos y Controles , Estudios de Cohortes , Ambiente , Europa (Continente) , Femenino , Humanos , Hiperlipoproteinemia Tipo II/genética , Estilo de Vida , Masculino , Persona de Mediana Edad , Infarto del Miocardio/epidemiología , Factores de Riesgo , Factores Sexuales , Reino UnidoRESUMEN
PURPOSE: Pre-mRNA processing factor 31 (PRPF31) is a ubiquitous protein needed for the assembly of the pre-mRNA splicing machinery. It has been shown that mutations in this gene cause autosomal dominant retinitis pigmentosa 11 (RP11), which is characterized by rod-cell degeneration. Interestingly, mutations in this ubiquitously expressed gene do not lead to phenotypes other than retinal malfunction. Furthermore, the dominant inheritance pattern has shown incomplete penetrance, which poses interesting questions about the disease mechanism of RP11. METHODS: To characterize PRPF31 function in the rod cells, two animal models have been generated. One was a heterozygous knock-in mouse (Prpf31(A216P/+)) carrying a point mutation p.A216P, which has previously been identified in RP11 patients. The second was a heterozygous knockout mouse (Prpf31(+/-)). Retinal degeneration in RP11 mouse models was monitored by electroretinography and histology. RESULTS: Generation of the mouse models is presented, as are results of ERGs and retinal morphology. No degenerative phenotype on fundus examination was found in Prpf31(A216P/+) and Prpf31(+/-) mice. Prpf31(A216P/A216P) and Prpf31(-/-) genotypes were embryonic lethal. CONCLUSIONS: The results imply that Prpf31 is necessary for survival, and there is no compensation mechanism in mouse for the lack of this splicing factor. The authors suggest that p.A216P mutation in Prpf31 does not exert a dominant negative effect and that one Prpf31 wild-type allele is sufficient for maintenance of the healthy retina in mice.
Asunto(s)
Modelos Animales de Enfermedad , Proteínas del Ojo/genética , Genes Dominantes , Retinitis Pigmentosa/genética , Animales , Western Blotting , Electroforesis en Gel de Poliacrilamida , Electrorretinografía , Femenino , Técnicas de Sustitución del Gen , Técnicas de Inactivación de Genes , Marcación de Gen , Genotipo , Humanos , Etiquetado Corte-Fin in Situ , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Oftalmoscopía , Mutación Puntual , Retina/fisiopatología , Retinitis Pigmentosa/fisiopatologíaRESUMEN
Despite rapid advances in the identification of genes involved in disease, the predictive power of the genotype remains limited, in part owing to poorly understood effects of second-site modifiers. Here we demonstrate that a polymorphic coding variant of RPGRIP1L (retinitis pigmentosa GTPase regulator-interacting protein-1 like), a ciliary gene mutated in Meckel-Gruber (MKS) and Joubert (JBTS) syndromes, is associated with the development of retinal degeneration in individuals with ciliopathies caused by mutations in other genes. As part of our resequencing efforts of the ciliary proteome, we identified several putative loss-of-function RPGRIP1L mutations, including one common variant, A229T. Multiple genetic lines of evidence showed this allele to be associated with photoreceptor loss in ciliopathies. Moreover, we show that RPGRIP1L interacts biochemically with RPGR, loss of which causes retinal degeneration, and that the Thr229-encoded protein significantly compromises this interaction. Our data represent an example of modification of a discrete phenotype of syndromic disease and highlight the importance of a multifaceted approach for the discovery of modifier alleles of intermediate frequency and effect.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Variación Genética , Degeneración Retiniana/genética , Alelos , Animales , Síndrome de Bardet-Biedl/genética , Cuerpo Ciliar/fisiopatología , Europa (Continente)/epidemiología , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Humanos , Mutación , Polimorfismo de Nucleótido Simple , ARN Mensajero/genética , Degeneración Retiniana/epidemiología , Degeneración Retiniana/prevención & control , Retinitis Pigmentosa/enzimología , Retinitis Pigmentosa/genética , Uveítis/epidemiología , Uveítis/genética , Pez Cebra/genéticaRESUMEN
We report mutations in the gene for topoisomerase I-binding RS protein (TOPORS) in patients with autosomal dominant retinitis pigmentosa (adRP) linked to chromosome 9p21.1 (locus RP31). A positional-cloning approach, together with the use of bioinformatics, identified TOPORS (comprising three exons and encoding a protein of 1,045 aa) as the gene responsible for adRP. Mutations that include an insertion and a deletion have been identified in two adRP-affected families--one French Canadian and one German family, respectively. Interestingly, a distinct phenotype is noted at the earlier stages of the disease, with an unusual perivascular cuff of retinal pigment epithelium atrophy, which was found surrounding the superior and inferior arcades in the retina. TOPORS is a RING domain-containing E3 ubiquitin ligase and localizes in the nucleus in speckled loci that are associated with promyelocytic leukemia bodies. The ubiquitous nature of TOPORS expression and a lack of mutant protein in patients are highly suggestive of haploinsufficiency, rather than a dominant negative effect, as the molecular mechanism of the disease and make rescue of the clinical phenotype amenable to somatic gene therapy.