RESUMEN
Tissue plasminogen activator (tPA) is a serine protease expressed in several brain regions and reported to be involved in the control of emotional and cognitive functions. Nevertheless, little is known about the structure-function relationships of these tPA-dependent behaviors. Here, by using a new model of constitutive tPA-deficient mice (tPAnull), we first show that tPA controls locomotor activity, spatial cognition and anxiety. To investigate the brain structures involved in these tPA-dependent behavioral phenotypes, we next generated tPAflox mice allowing conditional tPA deletion (cKO) following stereotaxic injections of adeno-associated virus driving Cre-recombinase expression (AAV-Cre-GFP). We demonstrate that tPA removal in the dentate gyrus of the hippocampus induces hyperactivity and partial spatial memory deficits. Moreover, the deletion of tPA in the central nucleus of the amygdala, but not in the basolateral nucleus, induces hyperactivity and reduced anxiety-like level. Importantly, we prove that these behaviors depend on the tPA present in the adult brain and not on neurodevelopmental disorders. Also, interestingly, our data show that tPA from Protein kinase-C delta-positive (PKCδ) GABAergic interneurons of the lateral/ capsular part of adult mouse central amygdala controls emotional functions through neuronal activation of the medial central amygdala. Together, our study brings new data about the critical central role of tPA in behavioral modulations in adult mice.
Asunto(s)
Núcleo Amigdalino Central , Proteína Quinasa C-delta/metabolismo , Animales , Ansiedad , Trastornos de Ansiedad , Núcleo Amigdalino Central/metabolismo , Neuronas GABAérgicas/metabolismo , Ratones , Ratones Endogámicos C57BL , Activador de Tejido Plasminógeno/genética , Activador de Tejido Plasminógeno/metabolismoRESUMEN
BACKGROUND: Perineuronal nets (PNNs) are specialized extracellular matrix structures mainly found around fast-spiking parvalbumin (FS-PV) interneurons. In the adult, their degradation alters FS-PV-driven functions, such as brain plasticity and memory, and altered PNN structures have been found in neurodevelopmental and central nervous system disorders such as Alzheimer's disease, leading to interest in identifying targets able to modify or participate in PNN metabolism. The serine protease tissue-type plasminogen activator (tPA) plays multifaceted roles in brain pathophysiology. However, its cellular expression profile in the brain remains unclear and a possible role in matrix plasticity through PNN remodeling has never been investigated. RESULT: By combining a GFP reporter approach, immunohistology, electrophysiology, and single-cell RT-PCR, we discovered that cortical FS-PV interneurons are a source of tPA in vivo. We found that mice specifically lacking tPA in FS-PV interneurons display denser PNNs in the somatosensory cortex, suggesting a role for tPA from FS-PV interneurons in PNN remodeling. In vitro analyses in primary cultures of mouse interneurons also showed that tPA converts plasminogen into active plasmin, which in turn, directly degrades aggrecan, a major structural chondroitin sulfate proteoglycan (CSPG) in PNNs. CONCLUSIONS: We demonstrate that tPA released from FS-PV interneurons in the central nervous system reduces PNN density through CSPG degradation. The discovery of this tPA-dependent PNN remodeling opens interesting insights into the control of brain plasticity.
Asunto(s)
Parvalbúminas , Activador de Tejido Plasminógeno , Agrecanos/metabolismo , Animales , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Matriz Extracelular/metabolismo , Fibrinolisina/metabolismo , Interneuronas/fisiología , Ratones , Parvalbúminas/metabolismo , Plasminógeno/metabolismo , Activador de Tejido Plasminógeno/metabolismoRESUMEN
Increase in blood-brain barrier (BBB) permeability is a crucial step in neuroinflammatory processes. We previously showed that N Methyl D Aspartate Receptor (NMDARs), expressed on cerebral endothelial cells forming the BBB, regulate immune cell infiltration across this barrier in the mouse. Here, we describe the mechanism responsible for the action of NMDARs on BBB permeabilization. We report that mouse CNS endothelial NMDARs display the regulatory GluN3A subunit. This composition confers to NMDARs' unconventional properties: these receptors do not induce Ca2+ influx but rather show nonionotropic properties. In inflammatory conditions, costimulation of human brain endothelial cells by NMDA agonists (NMDA or glycine) and the serine protease tissue plasminogen activator, previously shown to potentiate NMDAR activity, induces metabotropic signaling via the Rho/ROCK pathway. This pathway leads to an increase in permeability via phosphorylation of myosin light chain and subsequent shrinkage of human brain endothelial cells. Together, these data draw a link between NMDARs and the cytoskeleton in brain endothelial cells that regulates BBB permeability in inflammatory conditions.SIGNIFICANCE STATEMENT The authors describe how NMDARs expressed on endothelial cells regulate blood-brain barrier function via myosin light chain phosphorylation and increase in permeability. They report that these non-neuronal NMDARs display distinct structural, functional, and pharmacological features than their neuronal counterparts.
Asunto(s)
Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Miosinas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Barrera Hematoencefálica/efectos de los fármacos , Línea Celular , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Células Endoteliales/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/farmacología , Masculino , Ratones , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Permeabilidad , Fosforilación/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/agonistas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Activador de Tejido Plasminógeno/farmacología , Factor de Necrosis Tumoral alfa/farmacologíaRESUMEN
Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is a neuropsychiatric disease characterized by an antibody-mediated autoimmune response against NMDAR. Recent studies have shown that anti-NMDAR antibodies are involved in the pathophysiology of the disease. However, the upstream immune and inflammatory processes responsible for this pathogenic response are still poorly understood. Here, we immunized mice against the region of NMDA receptor containing the N368/G369 amino acids, previously implicated in a pathogenic response. This paradigm induced encephalopathy characterized by blood-brain barrier opening, periventricular T2-MRI hyperintensities and IgG deposits into the brain parenchyma. Two weeks after immunization, mice developed clinical symptoms reminiscent of encephalitis: anxiety- and depressive-like behaviours, spatial memory impairment (without motor disorders) and increased sensitivity to seizures. This response occurred independently of overt T-cell recruitment. However, it was associated with B220+ (B cell) infiltration towards the ventricles, where they differentiated into CD138+ cells (plasmocytes). Interestingly, these B cells originated from peripheral lymphoid organs (spleen and cervical lymphoid nodes). Finally, blocking the B-cell response using a depleting cocktail of antibodies reduced the severity of symptoms in encephalitis mice. This study demonstrates that the B-cell response can lead to an autoimmune reaction against NMDAR that drives encephalitis-like behavioural impairments. It also provides a relevant platform for dissecting encephalitogenic mechanisms in an animal model, and enables the testing of therapeutic strategies targeting the immune system in anti-NMDAR encephalitis.
Asunto(s)
Autoanticuerpos/sangre , Linfocitos B/metabolismo , Encefalitis/sangre , Enfermedad de Hashimoto/sangre , Proteínas del Tejido Nervioso/toxicidad , Animales , Autoanticuerpos/inmunología , Linfocitos B/inmunología , Encefalitis/inducido químicamente , Encefalitis/inmunología , Enfermedad de Hashimoto/inducido químicamente , Enfermedad de Hashimoto/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/inmunología , Receptores de N-Metil-D-Aspartato/inmunologíaRESUMEN
BACKGROUND: The "Program of Research on the Integration of Services for the Maintenance of Autonomy" (PRISMA-7) and "Emergency room evaluation and recommendations" (ER2) are both clinical tools used in Québec Emergency Departments (EDs) for screening of older ED users at higher risk of poor outcomes, such as prolonged length of stay (LOS) in EDs and in hospital. The study aimed to: 1) examine whether the PRISMA-7 and ER2 risk levels were associated with length of stays in ED and hospital, as well as hospital admission; and 2) compare the criteria performance (i.e., sensitivity, specificity, positive predictive value, negative predictive value, likelihood ratios and area under receiver operating characteristic curve) of the PRISMA-7 and ER2 high-risk levels for these three ED adverse events in Québec older patients visiting ED on a stretcher. METHODS: A total of 1905 older patients who visited the ED of the Jewish General Hospital (Montreal, Québec, Canada) on stretchers were recruited in this prospective observational cohort. Upon their ED arrival, PRISMA-7 and ER2 were performed. The outcomes were LOS in ED and in hospital, and hospital admission. RESULTS: The PRISMA-7 and ER2 risk levels were associated with length of stay in ED and hospital as well as with hospital admission. Prolonged stays and higher hospitalization rates were associated with high-risk levels, whereas those in low-risk level groups had significantly shorter LOS and a lower rate of hospital admission (P < 0.006). While performance measures were poor for both assessment tools, ER2 had a greater prognostic testing accuracy compared with PRISMA-7. CONCLUSION: PRISMA-7 and ER2 were both associated with incidental short-term ED adverse events but their overall prognostic testing accuracy was low, suggesting that they cannot be used as prognostic tools for this purpose.
Asunto(s)
Servicio de Urgencia en Hospital , Evaluación Geriátrica , Anciano , Canadá , Humanos , Tiempo de Internación , Pronóstico , Estudios Prospectivos , Quebec/epidemiologíaRESUMEN
In humans, spatial cognition and navigation impairments are a frequent situation during physiological and pathological aging, leading to a dramatic deterioration in the quality of life. Despite the discovery of neurons with location-specific activity in rodents, that is, place cells in the hippocampus and later on grid cells in the entorhinal cortex (EC), the molecular mechanisms underlying spatial cognition are still poorly known. Our present data bring together in an unusual combination 2 molecules of primary biological importance: a major neuronal excitatory receptor, N-methyl-D-aspartate receptor (NMDAR), and an extracellular protease, tissue plasminogen activator (tPA), in the control of spatial navigation. By using tPA-deficient mice and a structure-selective pharmacological approach, we demonstrate that the tPA-dependent NMDAR signaling potentiation in the EC plays a key and selective role in the encoding and the subsequent use of distant landmarks during spatial learning. We also demonstrate that this novel function of tPA in the EC is reduced during aging. Overall, these results argue for the concept that encoding of proximal versus distal landmarks is mediated not only by different anatomical pathways but also by different molecular mechanisms, with the tPA-dependent potentiation of NMDAR signaling in the EC that plays an important role.
Asunto(s)
Corteza Entorrinal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Envejecimiento , Animales , Calcio/metabolismo , Femenino , Hipocampo/metabolismo , Masculino , Ratones Noqueados , Neuronas/metabolismo , Transducción de Señal/fisiología , Activador de Tejido Plasminógeno/deficiencia , Activador de Tejido Plasminógeno/metabolismoRESUMEN
Myelination is a late developmental process regulated by a set of inhibitory and stimulatory factors, including extracellular matrix components. Accordingly, chondroitin sulfate proteoglycans (CSPGs) act as negative regulators of myelination processes. A disintegrin and metalloproteinase with thrombospondin motifs type 4 (ADAMTS-4) is an extracellular protease capable of degrading CSPGs. Although exogenous ADAMTS-4 has been proven to be beneficial in several models of central nervous system (CNS) injuries, the physiological functions of endogenous ADAMTS-4 remain poorly understood. We first used Adamts4/LacZ reporter mice to reveal that ADAMTS-4 is strongly expressed in the CNS, especially in the white matter, with a cellular profile restricted to mature oligodendrocytes. Interestingly, we evidenced an abnormal myelination in Adamts4-/- mice, characterized by a higher diameter of myelinated axons with a shifting g-ratio. Accordingly, lack of ADAMTS-4 is accompanied by motor deficits and disturbed nervous electrical activity. In conclusion, we demonstrate that ADAMTS-4 is a new marker of mature oligodendrocytes contributing to the myelination processes and thus to the control of motor capacities.
Asunto(s)
Proteína ADAMTS4/metabolismo , Trastornos del Movimiento/genética , Oligodendroglía/metabolismo , Proteína ADAMTS4/genética , Animales , Animales Recién Nacidos , Proteínas de Unión al Calcio/metabolismo , Cuerpo Calloso/metabolismo , Cuerpo Calloso/patología , Cuerpo Calloso/ultraestructura , Modelos Animales de Enfermedad , Potenciales Evocados Somatosensoriales/genética , Potenciales Evocados Somatosensoriales/fisiología , Trastornos Neurológicos de la Marcha/etiología , Locomoción/genética , Locomoción/fisiología , Masculino , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Microscopía Electrónica , Trastornos del Movimiento/fisiopatología , Proteína Básica de Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/patología , Oligodendroglía/ultraestructura , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Estadísticas no Paramétricas , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismoRESUMEN
BACKGROUND AND PURPOSE: Although the mechanisms that contribute to intracranial aneurysm (IA) formation and rupture are not totally elucidated, inflammation and matrix remodeling are incriminated. Because tPA (tissue-type plasminogen activator) controls both inflammatory and matrix remodeling processes, we hypothesized that tPA could be involved in the pathophysiology of IA. METHODS: Immunofluorescence analyses of tPA and its main substrate within the aneurysmal wall of murine and human samples were performed. We then compared the formation and rupture of IAs in wild-type, tPA-deficient and type 1 plasminogen activator inhibitor-deficient mice subjected to a model of elastase-induced IA. The specific contribution of vascular versus global tPA was investigated by performing hepatic hydrodynamic transfection of a cDNA encoding for tPA in tPA-deficient mice. The formation and rupture of IAs were monitored by magnetic resonance imaging tracking for 28 days. RESULTS: Immunofluorescence revealed increased expression of tPA within the aneurysmal wall. The number of aneurysms and their symptomatic ruptures were significantly lower in tPA-deficient than in wild-type mice. Conversely, they were higher in plasminogen activator inhibitor-deficient mice. The wild-type phenotype could be restored in tPA-deficient mice by selectively increasing circulating levels of tPA via hepatic hydrodynamic transfection of a cDNA encoding for tPA. CONCLUSIONS: Altogether, this preclinical study demonstrates that the tPA present in the blood stream is a key player of the formation of IAs. Thus, tPA should be considered as a possible new target for the prevention of IAs formation and rupture.
Asunto(s)
Aneurisma Roto/metabolismo , Aneurisma Intracraneal/metabolismo , Activador de Tejido Plasminógeno/metabolismo , Adulto , Aneurisma Roto/diagnóstico por imagen , Animales , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Aneurisma Intracraneal/diagnóstico por imagen , Imagen por Resonancia Magnética , Ratones , Ratones Noqueados , Inhibidor 1 de Activador Plasminogénico/genética , Rotura Espontánea , Activador de Tejido Plasminógeno/genéticaRESUMEN
Multiple sclerosis is among the most common causes of neurological disability in young adults. Here we provide the preclinical proof of concept of the benefit of a novel strategy of treatment for multiple sclerosis targeting neuroendothelial N-methyl-D-aspartate glutamate receptors. We designed a monoclonal antibody against N-methyl-D-aspartate receptors, which targets a regulatory site of the GluN1 subunit of N-methyl-D-aspartate receptor sensitive to the protease tissue plasminogen activator. This antibody reverted the effect of tissue plasminogen activator on N-methyl-D-aspartate receptor function without affecting basal N-methyl-D-aspartate receptor activity (n = 21, P < 0.01). This antibody bound N-methyl-D-aspartate receptors on the luminal surface of neurovascular endothelium in human tissues and in mouse, at the vicinity of tight junctions of the blood-spinal cord barrier. Noteworthy, it reduced human leucocyte transmigration in an in vitro model of the blood-brain barrier (n = 12, P < 0.05). When injected during the effector phase of MOG-induced experimental autoimmune encephalomyelitis (n = 24), it blocked the progression of neurological impairments, reducing cumulative clinical score (P < 0.001) and mean peak score (P < 0.001). This effect was observed in wild-type animals but not in tissue plasminogen activator knock-out animals (n = 10). This therapeutic effect was associated to a preservation of the blood-spinal cord barrier (n = 6, P < 0.001), leading to reduced leucocyte infiltration (n = 6, P < 0.001). Overall, this study unveils a critical function of endothelial N-methyl-D-aspartate receptor in multiple sclerosis, and highlights the therapeutic potential of strategies targeting the protease-regulated site of N-methyl-D-aspartate receptor.
Asunto(s)
Barrera Hematoencefálica/metabolismo , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Antagonistas de Aminoácidos Excitadores/farmacología , Proteínas del Tejido Nervioso/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Activador de Tejido Plasminógeno/metabolismo , Animales , Células Endoteliales , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
Interactions between platelet glycoprotein (Gp) IIb/IIIa and plasma proteins mediate platelet cross-linking in arterial thrombi. However, GpIIb/IIIa inhibitors fail to disperse platelet aggregates after myocardial infarction or ischemic stroke. These results suggest that stability of occlusive thrombi involves additional and as-yet-unidentified mechanisms. In the present study, we investigated the mechanisms driving platelet cross-linking during occlusive thrombus formation. Using computational fluid dynamic simulations and in vivo thrombosis models, we demonstrated that the inner structure of occlusive thrombi is heterogeneous and primarily determined by the rheological conditions that prevailed during thrombus growth. Unlike the first steps of thrombus formation, which are GpIIb/IIIa-dependent, our findings reveal that closure of the arterial lumen is mediated by GpIbα-von Willebrand Factor (VWF) interactions. Accordingly, disruption of platelet cross-linking using GpIbα-VWF inhibitors restored vessel patency and improved outcome in a mouse model of ischemic stroke, although the thrombi were resistant to fibrinolysis or traditional antithrombotic agents. Overall, our study demonstrates that disruption of GpIbα-VWF interactions restores vessel patency after occlusive thrombosis by specifically disaggregating the external layer of occlusive thrombi, which is constituted of platelet aggregates formed under very high shear rates.
Asunto(s)
Plaquetas/patología , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Trombosis/metabolismo , Trombosis/patología , Factor de von Willebrand/metabolismo , Animales , Benzofuranos , Plaquetas/metabolismo , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Hemorreología , Masculino , Ratones , Agregación Plaquetaria , Mapas de Interacción de Proteínas , QuinolinasRESUMEN
Although tissue plasminogen activator (tPA) is known to promote neuronal remodeling in the CNS, no mechanism of how this plastic function takes place has been reported so far. We provide here in vitro and in vivo demonstrations that this serine protease neutralizes inhibitory chondroitin sulfate proteoglycans (CSPGs) by promoting their degradation via the direct activation of endogenous type 4 disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS-4). Accordingly, in a model of compression-induced spinal cord injury (SCI) in rats, we found that administration of either tPA or its downstream effector ADAMTS-4 restores the tPA-dependent activity lost after the SCI and thereby, reduces content of CSPGs in the spinal cord, a cascade of events leading to an improved axonal regeneration/sprouting and eventually long term functional recovery. This is the first study to reveal a tPA-ADAMTS-4 axis and its function in the CNS. It also raises the prospect of exploiting such cooperation as a therapeutic tool for enhancing recovery after acute CNS injuries.
Asunto(s)
Proteínas ADAM/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Procolágeno N-Endopeptidasa/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Activador de Tejido Plasminógeno/farmacología , Proteína ADAMTS4 , Animales , Axones/efectos de los fármacos , Axones/fisiología , Células Cultivadas , Femenino , Neuritas/efectos de los fármacos , Neuritas/fisiología , Neurocano , Neuropéptidos/farmacología , Inhibidor 1 de Activador Plasminogénico/farmacología , Ratas , Ratas Wistar , Recuperación de la Función , Inhibidores de Serina Proteinasa/farmacología , Serpinas/farmacología , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiopatología , Compresión de la Médula Espinal/tratamiento farmacológico , Compresión de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Activador de Tejido Plasminógeno/antagonistas & inhibidores , NeuroserpinaRESUMEN
BACKGROUND: Health organizations face the critical task of executing and overseeing comprehensive health care. To address the challenges associated with this task, evidence-based dashboards have emerged as valuable tools. Since 2016, the regional health organizations of Quebec, Canada, have been responsible for ensuring implementation of the Quebec Alzheimer Plan (QAP), a provincial plan that aims to reinforce the capacity of primary care services to detect, diagnose, and treat persons with dementia. Despite the provincial scope of the QAP, the diverse material and human resources across regions introduce variability in the interest, utility, and specific needs associated with these dashboards. OBJECTIVE: The aim of this study was to assess the interest and utility of dashboards to support the QAP implementation, as well as to determine the needs for improving these aspects according to the perspectives of various types of professionals involved across regions. METHODS: An evaluative study using qualitative methods was conducted within a collaborative research approach involving different stakeholders, including the ministerial advisor and the four project managers responsible for supporting the implementation of the QAP, as well as researchers/scientific advisors. To support these organizations, we developed tailored, 2-page paper dashboards, detailing quantitative data on the prevalence of dementia, the use of health services by persons with dementia, and achievements and challenges of the QAP implementation in each organization's jurisdiction. We then conducted 23 focus groups with the managers and leading clinicians involved in the implementation of the QAP of each regional health organization. Real-time notes were taken using a structured observation grid. Content analysis was conducted according to different regions (organizations with university mandates or nearby organizations, labeled "university/peripheral"; organizations for which only part of the territory is in rural areas, labeled "mixed"; and organizations in remote or isolated areas, labeled "remote/isolated") and according to different types of participants (managers, leading clinicians, and other participants). RESULTS: Participants from organizations in all regions expressed interest in these dashboards and found them useful in several ways. However, they highlighted the need for indicators on orphan patients and other health care providers. Differences between regions were observed, particularly in the interest in continuity of care in university/peripheral regions and the need for diagnostic tools adapted to the culture in remote/isolated regions. CONCLUSIONS: These dashboards support the implementation of an Alzheimer Plan and contribute to the emergence of a learning health care system culture. This project allows each region to increase its monitoring capacity for the implementation of the QAP and facilitates reflection among individuals locally carrying out the implementation. The perspectives expressed will guide the preparation of the next iteration of the dashboards.
RESUMEN
Tissue plasminogen activator (tPA) is a serine protease with pleiotropic actions in the CNS, such as synaptic plasticity and neuronal death. Some effects of tPA require its interaction with the GluN1 subunit of the NMDA receptor (NMDAR), leading to a potentiation of NMDAR signaling. We have reported previously that the pro-neurotoxic effect of tPA is mediated through GluN2D subunit-containing NMDARs. Thus, the aim of the present study was to determine whether GluN2D subunit-containing NMDARs drive tPA-mediated cognitive functions. To address this issue, a strategy of immunization designed to prevent the in vivo interaction of tPA with NMDARs and GluN2D-deficient mice were used in a set of behavioral tasks. Altogether, our data provide the first evidence that tPA influences spatial memory through its preferential interaction with GluN2D subunit-containing NMDARs.
Asunto(s)
Ácido Glutámico/metabolismo , Aprendizaje por Laberinto/fisiología , Memoria a Corto Plazo/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Percepción Espacial/fisiología , Activador de Tejido Plasminógeno/metabolismo , Animales , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Subunidades de ProteínaRESUMEN
BACKGROUND AND PURPOSE: Our aim was to assess the spatiotemporal evolution of the cerebrovascular inflammation occurring after ischemic and hemorrhagic strokes using a recently developed, fast, and ultra-sensitive molecular MRI method. METHODS: We first assessed longitudinally the cerebrovascular inflammation triggered by collagenase-induced hemorrhage and by permanent/transient middle cerebral artery occlusion in mice, using MRI after injection of microparticles of iron oxide targeted to vascular cell adhesion molecule-1 (MPIOs-αVCAM-1). Thereafter, we used this method to study the anti-inflammatory effects of celecoxib, atorvastatin, and dipyridamole after stroke. RESULTS: Using multiparametric MRI, we demonstrated that the level and the kinetics of cerebrovascular VCAM-1 expression depend on several parameters, including stroke pathogenesis, the natural history of the disease, and the administration of inflammation-modulating drugs. Interestingly, in transient middle cerebral artery occlusion and intracranial hemorrhage models, VCAM-1 expression was maximal at 24 hours and almost returned to baseline 5 days after stroke onset. In contrast, after permanent middle cerebral artery occlusion, VCAM-1 overexpression was sustained between 24 hours and 5 days, and was particularly significant in the peri-infarct areas. Our results suggest that these perilesional areas expressing VCAM-1 constitute an inflammatory penumbra that is recruited by the ischemic core during the subacute phase. Using MPIOs-αVCAM-1-enhanced imaging, we also provided evidence that celecoxib and atorvastatin (but not dipyridamole) alleviate VCAM-1 overexpression after stroke and prevent formation of the inflammatory penumbra. CONCLUSIONS: MPIOs-αVCAM-1-enhanced imaging seems to be promising in the detection of individuals presenting with severe cerebrovascular responses after stroke, which could therefore benefit from anti-inflammatory treatments.
Asunto(s)
Infarto de la Arteria Cerebral Media/patología , Hemorragias Intracraneales/patología , Imagen por Resonancia Magnética/métodos , Molécula 1 de Adhesión Celular Vascular/metabolismo , Animales , Compuestos Férricos , Aumento de la Imagen/métodos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/etiología , Inflamación/tratamiento farmacológico , Inflamación/etiología , Inflamación/patología , Hemorragias Intracraneales/inducido químicamente , Hemorragias Intracraneales/tratamiento farmacológico , Imagen por Resonancia Magnética/instrumentación , Ratones , Molécula 1 de Adhesión Celular Vascular/efectos de los fármacosRESUMEN
BACKGROUND: Regulation of cerebral blood flow (CBF) directly influence brain functions and dysfunctions and involves complex mechanisms, including neurovascular coupling (NVC). It was suggested that the serine protease tissue-type plasminogen activator (tPA) could control CNV induced by whisker stimulation in rodents, through its action on N-methyl-D-Aspartate receptors (NMDARs). However, the origin of tPA and the location and mechanism of its action on NMDARs in relation to CNV remained debated. METHODS: Here, we answered these issues using tPANull mice, conditional deletions of either endothelial tPA (VECad-CreΔtPA) or endothelial GluN1 subunit of NMDARs (VECad-CreΔGluN1), parabioses between wild-type and tPANull mice, hydrodynamic transfection-induced deletion of liver tPA, hepatectomy and pharmacological approaches. RESULTS: We thus demonstrate that physiological concentrations of vascular tPA, achieved by the bradykinin type 2 receptors-dependent production and release of tPA from liver endothelial cells, promote NVC, through a mechanism dependent on brain endothelial NMDARs. CONCLUSIONS: These data highlight a new mechanism of regulation of NVC involving both endothelial tPA and NMDARs.
Asunto(s)
Acoplamiento Neurovascular , Activador de Tejido Plasminógeno , Ratones , Animales , N-Metilaspartato/farmacología , Células Endoteliales/metabolismo , Encéfalo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Ratones Noqueados , Hígado/metabolismoRESUMEN
BACKGROUND AND PURPOSE: Despite side effects including N-methyl-d-aspartate-mediated neurotoxicity, recombinant tissue-type plasminogen activator (rtPA) remains the only approved acute treatment for ischemic stroke. Memantine, used for treatment of Alzheimer disease, is an antagonist for N-methyl-d-aspartate receptors. We investigated whether memantine could be used as a neuroprotective adjunct therapy for rtPA-induced thrombolysis after stroke. METHODS: In vitro N-methyl-d-aspartate exposure, oxygen and glucose deprivation, and N-methyl-d-aspartate-mediated calcium videomicroscopy experiments were performed on murine cortical neurons in the presence of rtPA and memantine. The therapeutic safety of rtPA and memantine coadministration was evaluated in mouse models of thrombotic stroke and intracerebral hemorrhage. Ischemic and hemorrhagic volumes were assessed by MRI and neurological evaluation was performed by the string test and automated gait analysis. RESULTS: Our in vitro observations showed that memantine was able to prevent the proneurotoxic effects of rtPA in cultured cortical neurons. Although memantine did not alter the fibrinolytic activity of rtPA, our in vivo observations revealed that it blunted the noxious effects of delayed thrombolysis on lesion volumes and neurological deficits after ischemic stroke. In addition, memantine rescued rtPA-induced decrease in survival rate after intracerebral hemorrhage. CONCLUSIONS: Memantine could be used as an adjunct therapy to improve the safety of thrombolysis.
Asunto(s)
Antagonistas de Aminoácidos Excitadores/uso terapéutico , Memantina/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Terapia Trombolítica/métodos , Activador de Tejido Plasminógeno/efectos adversos , Activador de Tejido Plasminógeno/uso terapéutico , Animales , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Quimioterapia Adyuvante , Antagonistas de Aminoácidos Excitadores/farmacología , Fibrinolíticos/efectos adversos , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Técnicas In Vitro , Imagen por Resonancia Magnética , Masculino , Memantina/farmacología , Ratones , Modelos Animales , N-Metilaspartato/farmacología , Accidente Cerebrovascular/patología , Activador de Tejido Plasminógeno/farmacología , Resultado del TratamientoRESUMEN
Since endothelial cells can be targeted by large contrast-carrying particles, molecular imaging of cerebrovascular cell activation is highly promising to evaluate the underlying inflammation of the central nervous system (CNS). In this study, we aimed to demonstrate that molecular magnetic resonance imaging (MRI) of cerebrovascular cell activation can reveal CNS disorders in the absence of visible lesions and symptoms. To this aim, we optimized contrast carrying particles targeting vascular cell adhesion molecule-1 and MRI protocols through both in vitro and in vivo experiments. Although, pre-contrast MRI images failed to reveal the ongoing pathology, contrast-enhanced MRI revealed hypoperfusion-triggered CNS injury in vascular dementia, unmasked amyloid-induced cerebrovascular activation in Alzheimer's disease and allowed monitoring of disease activity during experimental autoimmune encephalomyelitis. Moreover, contrast-enhanced MRI revealed the cerebrovascular cell activation associated with known risk factors of CNS disorders such as peripheral inflammation, ethanol consumption, hyperglycemia and aging. By providing a dramatically higher sensitivity than previously reported methods and molecular contrast agents, the technology described in the present study opens new avenues of investigation in the field of neuroinflammation.
Asunto(s)
Enfermedades del Sistema Nervioso Central/diagnóstico , Células Endoteliales/metabolismo , Compuestos Férricos , Imagen por Resonancia Magnética/métodos , Imagen Molecular/métodos , Animales , Western Blotting , Inmunohistoquímica , Masculino , Nanopartículas del Metal , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
BACKGROUND AND PURPOSE: Tissue-type plasminogen activator (tPA) is the only drug approved for the acute treatment of ischemic stroke but with two faces in the disease: beneficial fibrinolysis in the vasculature and damaging effects on the neurovascular unit and brain parenchyma. To improve this profile, we developed a novel strategy, relying on antibodies targeting the proneurotoxic effects of tPA. METHODS: After production and characterization of antibodies (αATD-NR1) that specifically prevent the interaction of tPA with the ATD-NR1 of N-methyl-d-aspartate receptors, we have evaluated their efficacy in a model of murine thromboembolic stroke with or without recombinant tPA-induced reperfusion, coupled to MRI, near-infrared fluorescence imaging, and behavior assessments. RESULTS: In vitro, αATD-NR1 prevented the proexcitotoxic effect of tPA without altering N-methyl-d-aspartate-induced neurotransmission. In vivo, after a single administration alone or with late recombinant tPA-induced thrombolysis, antibodies dramatically reduced brain injuries and blood-brain barrier leakage, thus improving long-term neurological outcome. CONCLUSIONS: Our strategy limits ischemic damages and extends the therapeutic window of tPA-driven thrombolysis. Thus, the prospect of this immunotherapy is an extension of the range of treatable patients.
Asunto(s)
Anticuerpos/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Fibrinolíticos/uso terapéutico , Receptores de N-Metil-D-Aspartato/inmunología , Accidente Cerebrovascular/tratamiento farmacológico , Activador de Tejido Plasminógeno/uso terapéutico , Animales , Anticuerpos/inmunología , Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Isquemia Encefálica/inmunología , Fibrinolíticos/inmunología , Ratones , Accidente Cerebrovascular/inmunología , Activador de Tejido Plasminógeno/inmunologíaRESUMEN
Although tissue type plasminogen activator (tPA) and brain derived neurotrophic factor (BDNF) have been extensively described to influence brain outcomes in a number of disorders, their roles during physiological aging are poorly investigated. In the present study, we investigated whether maintenance of mice in different environmental conditions could influence age-associated changes in hippocampal tPA expression and BDNF maturation in relation with modifications of their cognitive performances. Our data indicate that maintenance in enriched housing led to a reversal of age-associated decrease in expression of hippocampal tPA. A subsequent increase in the level of mature BDNF and an improvement in emotional and spatial memories were observed. Taken together, these data suggest that the tPA-BDNF axis could play a critical role in the control of cognitive functions influenced both by the age and housing conditions.
Asunto(s)
Envejecimiento/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Encéfalo/fisiología , Ambiente , Neuronas/fisiología , Activador de Tejido Plasminógeno/metabolismo , Animales , Aprendizaje por Asociación/fisiología , Conducta Animal/fisiología , Condicionamiento Psicológico/fisiología , Miedo/fisiología , Femenino , Vivienda para Animales , Memoria/fisiología , RatonesRESUMEN
Delayed cerebral ischemia (DCI) is one of the main prognosis factors for disability after aneurysmal subarachnoid hemorrhage (SAH). The lack of a consensual definition for DCI had limited investigation and care in human until 2010, when a multidisciplinary research expert group proposed to define DCI as the occurrence of cerebral infarction (identified on imaging or histology) associated with clinical deterioration. We performed a systematic review to assess whether preclinical models of SAH meet this definition, focusing on the combination of noninvasive imaging and neurological deficits. To this aim, we searched in PUBMED database and included all rodent SAH models that considered cerebral ischemia and/or neurological outcome and/or vasospasm. Seventy-eight publications were included. Eight different methods were performed to induce SAH, with blood injection in the cisterna magna being the most widely used (n = 39, 50%). Vasospasm was the most investigated SAH-related complication (n = 52, 67%) compared to cerebral ischemia (n = 30, 38%), which was never investigated with imaging. Neurological deficits were also explored (n = 19, 24%). This systematic review shows that no preclinical SAH model meets the 2010 clinical definition of DCI, highlighting the inconsistencies between preclinical and clinical standards. In order to enhance research and favor translation to humans, pertinent SAH animal models reproducing DCI are urgently needed.