Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 217(2): 571-585, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29086921

RESUMEN

Optimization models of stomatal conductance (gs ) attempt to explain observed stomatal behaviour in terms of cost--benefit tradeoffs. While the benefit of stomatal opening through increased CO2 uptake is clear, currently the nature of the associated cost(s) remains unclear. We explored the hypothesis that gs maximizes leaf photosynthesis, where the cost of stomatal opening arises from nonstomatal reductions in photosynthesis induced by leaf water stress. We analytically solved two cases, CAP and MES, in which reduced leaf water potential leads to reductions in carboxylation capacity (CAP) and mesophyll conductance (gm ) (MES). Both CAP and MES predict the same one-parameter relationship between the intercellular : atmospheric CO2 concentration ratio (ci /ca ) and vapour pressure deficit (VPD, D), viz. ci /ca  ≈ ξ/(ξ + âˆšD), as that obtained from previous optimization models, with the novel feature that the parameter ξ is determined unambiguously as a function of a small number of photosynthetic and hydraulic variables. These include soil-to-leaf hydraulic conductance, implying a stomatal closure response to drought. MES also predicts that gs /gm is closely related to ci /ca and is similarly conservative. These results are consistent with observations, give rise to new testable predictions, and offer new insights into the covariation of stomatal, mesophyll and hydraulic conductances.


Asunto(s)
Células del Mesófilo/fisiología , Modelos Biológicos , Fotosíntesis , Estomas de Plantas/fisiología , Agua/fisiología , Transporte Biológico , Dióxido de Carbono/metabolismo , Sequías , Suelo , Presión de Vapor
2.
Biogeosciences ; 19(17): 4067-4088, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36171741

RESUMEN

Separating the components of ecosystem-scale carbon exchange is crucial in order to develop better models and future predictions of the terrestrial carbon cycle. However, there are several uncertainties and unknowns related to current photosynthesis estimates. In this study, we evaluate four different methods for estimating photosynthesis at a boreal forest at the ecosystem scale, of which two are based on carbon dioxide (CO2) flux measurements and two on carbonyl sulfide (COS) flux measurements. The CO2-based methods use traditional flux partitioning and artificial neural networks to separate the net CO2 flux into respiration and photosynthesis. The COS-based methods make use of a unique 5-year COS flux data set and involve two different approaches to determine the leaf-scale relative uptake ratio of COS and CO2 (LRU), of which one (LRUCAP) was developed in this study. LRUCAP was based on a previously tested stomatal optimization theory (CAP), while LRUPAR was based on an empirical relation to measured radiation. For the measurement period 2013-2017, the artificial neural network method gave a GPP estimate very close to that of traditional flux partitioning at all timescales. On average, the COS-based methods gave higher GPP estimates than the CO2-based estimates on daily (23% and 7% higher, using LRUPAR and LRUCAP, respectively) and monthly scales (20% and 3% higher), as well as a higher cumulative sum over 3 months in all years (on average 25% and 3% higher). LRUCAP was higher than LRU estimated from chamber measurements at high radiation, leading to underestimation of midday GPP relative to other GPP methods. In general, however, use of LRUCAP gave closer agreement with CO2-based estimates of GPP than use of LRUPAR. When extended to other sites, LRUCAP may be more robust than LRUPAR because it is based on a physiological model whose parameters can be estimated from simple measurements or obtained from the literature. In contrast, the empirical radiation relation in LRUPAR may be more site-specific. However, this requires further testing at other measurement sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA