Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cell ; 179(2): 543-560.e26, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31585087

RESUMEN

Tyrosine phosphorylation regulates multi-layered signaling networks with broad implications in (patho)physiology, but high-throughput methods for functional annotation of phosphotyrosine sites are lacking. To decipher phosphotyrosine signaling directly in tissue samples, we developed a mass-spectrometry-based interaction proteomics approach. We measured the in vivo EGF-dependent signaling network in lung tissue quantifying >1,000 phosphotyrosine sites. To assign function to all EGF-regulated sites, we determined their recruited protein signaling complexes in lung tissue by interaction proteomics. We demonstrated how mutations near tyrosine residues introduce molecular switches that rewire cancer signaling networks, and we revealed oncogenic properties of such a lung cancer EGFR mutant. To demonstrate the scalability of the approach, we performed >1,000 phosphopeptide pulldowns and analyzed them by rapid mass spectrometric analysis, revealing tissue-specific differences in interactors. Our approach is a general strategy for functional annotation of phosphorylation sites in tissues, enabling in-depth mechanistic insights into oncogenic rewiring of signaling networks.


Asunto(s)
Carcinogénesis/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fosfotirosina/metabolismo , Células A549 , Animales , Humanos , Espectrometría de Masas/métodos , Mutación , Fosfoproteínas/metabolismo , Fosforilación , Proteómica , Ratas , Ratas Sprague-Dawley , Pez Cebra
2.
Circulation ; 145(19): 1480-1496, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35491884

RESUMEN

BACKGROUND: Exercise training, and catecholaminergic stimulation, increase the incidence of arrhythmic events in patients affected with arrhythmogenic right ventricular cardiomyopathy correlated with plakophilin-2 (PKP2) mutations. Separate data show that reduced abundance of PKP2 leads to dysregulation of intracellular Ca2+ (Ca2+i) homeostasis. Here, we study the relation between excercise, catecholaminergic stimulation, Ca2+i homeostasis, and arrhythmogenesis in PKP2-deficient murine hearts. METHODS: Experiments were performed in myocytes from a cardiomyocyte-specific, tamoxifen-activated, PKP2 knockout murine line (PKP2cKO). For training, mice underwent 75 minutes of treadmill running once per day, 5 days each week for 6 weeks. We used multiple approaches including imaging, high-resolution mass spectrometry, electrocardiography, and pharmacological challenges to study the functional properties of cells/hearts in vitro and in vivo. RESULTS: In myocytes from PKP2cKO animals, training increased sarcoplasmic reticulum Ca2+ load, increased the frequency and amplitude of spontaneous ryanodine receptor (ryanodine receptor 2)-mediated Ca2+ release events (sparks), and changed the time course of sarcomeric shortening. Phosphoproteomics analysis revealed that training led to hyperphosphorylation of phospholamban in residues 16 and 17, suggesting a catecholaminergic component. Isoproterenol-induced increase in Ca2+i transient amplitude showed a differential response to ß-adrenergic blockade that depended on the purported ability of the blockers to reach intracellular receptors. Additional experiments showed significant reduction of isoproterenol-induced Ca2+i sparks and ventricular arrhythmias in PKP2cKO hearts exposed to an experimental blocker of ryanodine receptor 2 channels. CONCLUSIONS: Exercise disproportionately affects Ca2+i homeostasis in PKP2-deficient hearts in a manner facilitated by stimulation of intracellular ß-adrenergic receptors and hyperphosphorylation of phospholamban. These cellular changes create a proarrhythmogenic state that can be mitigated by ryanodine receptor 2 blockade. Our data unveil an arrhythmogenic mechanism for exercise-induced or catecholaminergic life-threatening arrhythmias in the setting of PKP2 deficit. We suggest that membrane-permeable ß-blockers are potentially more efficient for patients with arrhythmogenic right ventricular cardiomyopathy, highlight the potential for ryanodine receptor 2 channel blockers as treatment for the control of heart rhythm in the population at risk, and propose that PKP2-dependent and phospholamban-dependent arrhythmogenic right ventricular cardiomyopathy-related arrhythmias have a common mechanism.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Placofilinas , Retículo Sarcoplasmático , Animales , Arritmias Cardíacas , Displasia Ventricular Derecha Arritmogénica/genética , Calcio/metabolismo , Señalización del Calcio , Humanos , Isoproterenol/farmacología , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Condicionamiento Físico Animal/efectos adversos , Placofilinas/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
3.
Eur Heart J ; 43(17): 1668-1680, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35245370

RESUMEN

AIMS: Mitral valve prolapse (MVP) is a common valvular heart disease with a prevalence of >2% in the general adult population. Despite this high incidence, there is a limited understanding of the molecular mechanism of this disease, and no medical therapy is available for this disease. We aimed to elucidate the genetic basis of MVP in order to better understand this complex disorder. METHODS AND RESULTS: We performed a meta-analysis of six genome-wide association studies that included 4884 cases and 434 649 controls. We identified 14 loci associated with MVP in our primary analysis and 2 additional loci associated with a subset of the samples that additionally underwent mitral valve surgery. Integration of epigenetic, transcriptional, and proteomic data identified candidate MVP genes including LMCD1, SPTBN1, LTBP2, TGFB2, NMB, and ALPK3. We created a polygenic risk score (PRS) for MVP and showed an improved MVP risk prediction beyond age, sex, and clinical risk factors. CONCLUSION: We identified 14 genetic loci that are associated with MVP. Multiple analyses identified candidate genes including two transforming growth factor-ß signalling molecules and spectrin ß. We present the first PRS for MVP that could eventually aid risk stratification of patients for MVP screening in a clinical setting. These findings advance our understanding of this common valvular heart disease and may reveal novel therapeutic targets for intervention.


Asunto(s)
Prolapso de la Válvula Mitral , Adulto , Sitios Genéticos/genética , Estudio de Asociación del Genoma Completo , Humanos , Proteínas de Unión a TGF-beta Latente/genética , Prolapso de la Válvula Mitral/genética , Proteómica , Factores de Riesgo
4.
Circulation ; 140(12): 1015-1030, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31315456

RESUMEN

BACKGROUND: Plakophilin-2 (PKP2) is classically defined as a desmosomal protein. Mutations in PKP2 associate with most cases of gene-positive arrhythmogenic right ventricular cardiomyopathy. A better understanding of PKP2 cardiac biology can help elucidate the mechanisms underlying arrhythmic and cardiomyopathic events consequent to PKP2 deficiency. Here, we sought to capture early molecular/cellular events that can act as nascent arrhythmic/cardiomyopathic substrates. METHODS: We used multiple imaging, biochemical and high-resolution mass spectrometry methods to study functional/structural properties of cells/tissues derived from cardiomyocyte-specific, tamoxifen-activated, PKP2 knockout mice (PKP2cKO) 14 days post-tamoxifen injection, a time point preceding overt electrical or structural phenotypes. Myocytes from right or left ventricular free wall were studied separately. RESULTS: Most properties of PKP2cKO left ventricular myocytes were not different from control; in contrast, PKP2cKO right ventricular (RV) myocytes showed increased amplitude and duration of Ca2+ transients, increased Ca2+ in the cytoplasm and sarcoplasmic reticulum, increased frequency of spontaneous Ca2+ release events (sparks) even at comparable sarcoplasmic reticulum load, and dynamic Ca2+ accumulation in mitochondria. We also observed early- and delayed-after transients in RV myocytes and heightened susceptibility to arrhythmias in Langendorff-perfused hearts. In addition, ryanodine receptor 2 in PKP2cKO-RV cells presented enhanced Ca2+ sensitivity and preferential phosphorylation in a domain known to modulate Ca2+ gating. RNAseq at 14 days post-tamoxifen showed no relevant difference in transcript abundance between RV and left ventricle, neither in control nor in PKP2cKO cells. Instead, we found an RV-predominant increase in membrane permeability that can permit Ca2+ entry into the cell. Connexin 43 ablation mitigated the membrane permeability increase, accumulation of cytoplasmic Ca2+, increased frequency of sparks and early stages of RV dysfunction. Connexin 43 hemichannel block with GAP19 normalized [Ca2+]i homeostasis. Similarly, protein kinase C inhibition normalized spark frequency at comparable sarcoplasmic reticulum load levels. CONCLUSIONS: Loss of PKP2 creates an RV-predominant arrhythmogenic substrate (Ca2+ dysregulation) that precedes the cardiomyopathy; this is, at least in part, mediated by a Connexin 43-dependent membrane conduit and repressed by protein kinase C inhibitors. Given that asymmetric Ca2+ dysregulation precedes the cardiomyopathic stage, we speculate that abnormal Ca2+ handling in RV myocytes can be a trigger for gross structural changes observed at a later stage.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica/metabolismo , Conexina 43/metabolismo , Desmosomas/metabolismo , Miocitos Cardíacos/fisiología , Placofilinas/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio , Células Cultivadas , Modelos Animales de Enfermedad , Homeostasis , Humanos , Ratones , Ratones Noqueados , Mutación/genética , Placofilinas/genética
5.
Biochim Biophys Acta ; 1858(12): 2993-3004, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27641490

RESUMEN

Membrane proteins employ specific distribution patterns of amino acids in their tertiary structure for adaptation to their unique bilayer environment. The solvent-bilayer interface, in particular, displays the characteristic 'aromatic belt' that defines the transmembrane region of the protein, and satisfies the amphipathic interfacial environment. Tryptophan-the key residue of this aromatic belt-is known to influence the folding efficiency and stability of a large number of well-studied α-helical and ß-barrel membrane proteins. Here, we have used functional and biophysical techniques coupled with simulations, to decipher the contribution of strategically placed four intrinsic tryptophans of the human outer mitochondrial membrane protein, voltage-dependent anion channel isoform-2 (VDAC-2). We show that tryptophans help in maintaining the structural and functional integrity of folded hVDAC-2 barrel in micellar environments. The voltage gating characteristics of hVDAC-2 are affected upon mutation of tryptophans at positions 75, 86 and 221. We observe that Trp-160 and Trp-221 play a crucial role in the folding pathway of the barrel, and once folded, Trp-221 helps stabilize the folded protein in concert with Trp-75 and Trp-160. We further demonstrate that substituting Trp-86 with phenylalanine leads to the formation of stable barrel. We find that the region comprising strand ß4 (Trp-86) and ß10-14 (Trp-160 and Trp-221) display slower and faster folding kinetics, respectively, providing insight into a possible directional folding of hVDAC-2 from the C-terminus to N-terminus. Our results show that residue selection in a protein during evolution is a balancing compromise between optimum stability, function, and regulating protein turnover inside the cell.


Asunto(s)
Triptófano/química , Canal Aniónico 2 Dependiente del Voltaje/química , Humanos , Cinética , Micelas , Pliegue de Proteína , Estabilidad Proteica , Termodinámica
6.
Biochem Biophys Res Commun ; 492(1): 61-66, 2017 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-28807826

RESUMEN

Gene 33 protein (gp33) is a transcriptional coactivator for late genes of the T4 bacteriophage. gp33 possesses a 5-helix bundle core, with unstructured N- and C-terminal regions that account for >50% of the protein sequence. It plays a unique role of interacting with host RNA polymerase, couples transcription with DNA replication, and plays the dual function as repressor and co-activator in phage transcription. Here, we identify protein structural plasticity as the molecular basis of the dual nature in gp33. We find that gp33 has the peculiar property of remaining protease insensitive in its urea-unfolded state. Using NMR studies with spectroscopic measurements, we propose that intra-protein interactions are replaced by protein-urea interactions in gp33. This process not only unfolds gp33 but also renders it protease-resistant. Our studies shed new light on the unique structural malleability of gp33 that might be important in its transition from a repressor to a late transcription co-activator.


Asunto(s)
Péptido Hidrolasas/metabolismo , Desplegamiento Proteico , Proteínas Virales/química , Guanidina/farmacología , Modelos Moleculares , Conformación Proteica , Desplegamiento Proteico/efectos de los fármacos , Urea/farmacología , Proteínas Virales/aislamiento & purificación , Proteínas Virales/metabolismo
7.
J Biol Chem ; 290(51): 30240-52, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26487717

RESUMEN

Human voltage-dependent anion channel-2 (hVDAC-2) functions primarily as the crucial anti-apoptotic protein in the outer mitochondrial membrane, and additionally as a gated bidirectional metabolite transporter. The N-terminal helix (NTH), involved in voltage sensing, bears an additional 11-residue extension (NTE) only in hVDAC-2. In this study, we assign a unique role for the NTE as influencing the chaperone-independent refolding kinetics and overall thermodynamic stability of hVDAC-2. Our electrophysiology data shows that the N-helix is crucial for channel activity, whereas NTE sensitizes this isoform to voltage gating. Additionally, hVDAC-2 possesses the highest cysteine content, possibly for regulating reactive oxygen species content. We identify interdependent contributions of the N-helix and cysteines to channel function, and the measured stability in micellar environments with differing physicochemical properties. The evolutionary demand for the NTE in the presence of cysteines clearly emerges from our biochemical and functional studies, providing insight into factors that functionally demarcate hVDAC-2 from the other VDACs.


Asunto(s)
Activación del Canal Iónico , Proteínas Mitocondriales/química , Canal Aniónico 2 Dependiente del Voltaje/química , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Estructura Secundaria de Proteína , Relación Estructura-Actividad , Termodinámica , Canal Aniónico 2 Dependiente del Voltaje/genética , Canal Aniónico 2 Dependiente del Voltaje/metabolismo
8.
J Biol Chem ; 288(35): 25584-25592, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-23873934

RESUMEN

Human mitochondrial voltage-dependent anion channel 2 (hVDAC-2), the most predominant isoform seen in brain mitochondria, is not only crucial for cell survival but is also implicated in Alzheimer disease. The abundance of cysteines in this isoform is particularly fascinating, as hVDAC-1 cysteines have no associated functional role. We report a detailed biophysical examination of a Cys-less mutant of hVDAC-2, and its behavioral comparison with the wild type protein. Our findings suggest that cysteine mutation results in the formation of a better barrel at the expense of weakened protein-lipid interactions. The wild type protein displays stronger lipid association, despite being less structured. A reversal in behavior of both proteins is observed in the case of chemical denaturation, with the Cys-less mutant exhibiting lowered unfolding free energies. In bicellar systems comprising 14-C phosphocholines, we observe that protein-lipid interactions are weakened in both constructs, resulting in barrel structure destabilization. Our biochemical and biophysical studies together reveal key structural roles for the cysteine residues. We find that minor conformational variations in local residues are sufficient to define the membrane protein dynamics in hVDAC-2. Such subtle sequence variations contribute to differential stability of VDACs and may have implications in their in vivo regulation and recycling.


Asunto(s)
Cisteína/química , Fosforilcolina/química , Pliegue de Proteína , Canal Aniónico 2 Dependiente del Voltaje/química , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Cisteína/genética , Cisteína/metabolismo , Humanos , Mutación , Fosforilcolina/metabolismo , Estabilidad Proteica , Estructura Terciaria de Proteína , Canal Aniónico 2 Dependiente del Voltaje/genética , Canal Aniónico 2 Dependiente del Voltaje/metabolismo
9.
Nat Commun ; 15(1): 5234, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898010

RESUMEN

It has proved challenging to quantitatively relate the proteome to the transcriptome on a per-gene basis. Recent advances in data analytics have enabled a biologically meaningful modularization of the bacterial transcriptome. We thus investigate whether matched datasets of transcriptomes and proteomes from bacteria under diverse conditions can be modularized in the same way to reveal novel relationships between their compositions. We find that; (1) the modules of the proteome and the transcriptome are comprised of a similar list of gene products, (2) the modules in the proteome often represent combinations of modules from the transcriptome, (3) known transcriptional and post-translational regulation is reflected in differences between two sets of modules, allowing for knowledge-mapping when interpreting module functions, and (4) through statistical modeling, absolute proteome allocation can be inferred from the transcriptome alone. Quantitative and knowledge-based relationships can thus be found at the genome-scale between the proteome and transcriptome in bacteria.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Proteoma , Transcriptoma , Proteoma/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Transcripción Genética , Bacterias/genética , Bacterias/metabolismo , Perfilación de la Expresión Génica/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteómica/métodos
10.
Cardiovasc Res ; 120(8): 927-942, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38661182

RESUMEN

AIMS: In patients with heart failure (HF), concomitant sinus node dysfunction (SND) is an important predictor of mortality, yet its molecular underpinnings are poorly understood. Using proteomics, this study aimed to dissect the protein and phosphorylation remodelling within the sinus node in an animal model of HF with concurrent SND. METHODS AND RESULTS: We acquired deep sinus node proteomes and phosphoproteomes in mice with heart failure and SND and report extensive remodelling. Intersecting the measured (phospho)proteome changes with human genomics pharmacovigilance data, highlighted downregulated proteins involved in electrical activity such as the pacemaker ion channel, Hcn4. We confirmed the importance of ion channel downregulation for sinus node physiology using computer modelling. Guided by the proteomics data, we hypothesized that an inflammatory response may drive the electrophysiological remodeling underlying SND in heart failure. In support of this, experimentally induced inflammation downregulated Hcn4 and slowed pacemaking in the isolated sinus node. From the proteomics data we identified proinflammatory cytokine-like protein galectin-3 as a potential target to mitigate the effect. Indeed, in vivo suppression of galectin-3 in the animal model of heart failure prevented SND. CONCLUSION: Collectively, we outline the protein and phosphorylation remodeling of SND in heart failure, we highlight a role for inflammation in electrophysiological remodelling of the sinus node, and we present galectin-3 signalling as a target to ameliorate SND in heart failure.


Asunto(s)
Modelos Animales de Enfermedad , Insuficiencia Cardíaca , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Ratones Endogámicos C57BL , Proteómica , Síndrome del Seno Enfermo , Nodo Sinoatrial , Animales , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Nodo Sinoatrial/metabolismo , Nodo Sinoatrial/fisiopatología , Fosforilación , Síndrome del Seno Enfermo/metabolismo , Síndrome del Seno Enfermo/fisiopatología , Síndrome del Seno Enfermo/genética , Masculino , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Inflamación/fisiopatología , Inflamación/patología , Frecuencia Cardíaca , Canales de Potasio/metabolismo , Canales de Potasio/genética , Simulación por Computador , Modelos Cardiovasculares , Humanos , Transducción de Señal , Potenciales de Acción
11.
bioRxiv ; 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36865326

RESUMEN

It has proved challenging to quantitatively relate the proteome to the transcriptome on a per-gene basis. Recent advances in data analytics have enabled a biologically meaningful modularization of the bacterial transcriptome. We thus investigated whether matched datasets of transcriptomes and proteomes from bacteria under diverse conditions could be modularized in the same way to reveal novel relationships between their compositions. We found that; 1) the modules of the proteome and the transcriptome are comprised of a similar list of gene products, 2) the modules in the proteome often represent combinations of modules from the transcriptome, 3) known transcriptional and post-translational regulation is reflected in differences between two sets of modules, allowing for knowledge-mapping when interpreting module functions, and 4) through statistical modeling, absolute proteome allocation can be inferred from the transcriptome alone. Quantitative and knowledge-based relationships can thus be found at the genome-scale between the proteome and transcriptome in bacteria.

12.
bioRxiv ; 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37961097

RESUMEN

CC chemokine receptor 5 (CCR5) contributes to inflammatory responses by driving cell migration and scavenging chemokine to shape directional chemokine gradients. A drug against CCR5 has been approved for blocking HIV entry into cells. However, targeting CCR5 for the treatment of inflammatory diseases and cancer has had limited success because of the complex biology and pharmacology of this receptor. CCR5 is activated by many natural and engineered chemokines that elicit distinct receptor signaling and trafficking responses, including some that sequester the receptor inside the cell. The sequestration phenomenon may be therapeutically exploitable, but the mechanisms by which different ligands traffic CCR5 to different cellular locations are poorly understood. Here we employed live cell ascorbic acid peroxidase proximity labeling and quantitative mass spectrometry proteomics for unbiased discovery of temporally resolved protein neighborhoods of CCR5 following stimulation with its endogenous agonist, CCL5, and two CCL5 variants that promote intracellular retention of the receptor. Along with targeted pharmacological assays, the data reveals distinct ligand-dependent CCR5 trafficking patterns with temporal resolution. All three chemokines internalize CCR5 via ß-arrestin- dependent, clathrin-mediated endocytosis but to different extents, with different kinetics and with varying dependencies on GPCR kinase subtypes. The agonists differ in their ability to target the receptor to lysosomes for degradation, as well as to the Golgi compartment and the trans-Golgi network, and these trafficking patterns translate into distinct levels of ligand scavenging. The results provide insight into the molecular mechanisms behind CCR5 intracellular sequestration and suggest actionable patterns for the development of chemokine-based CCR5 targeting molecules. Significance Statement: CCR5 plays a crucial role in the immune system and is important in numerous physiological and pathological processes such as inflammation, cancer and HIV transmission. Along with its functional diversity, different CCR5 ligands can induce distinct receptor signaling responses and trafficking behaviors; the latter includes intracellular receptor sequestration which offers a potential therapeutic strategy for inhibiting CCR5 function. Using time-resolved proximity labeling proteomics and targeted pharmacological experiments, this study reveals the molecular basis for receptor sequestration including information that can be exploited for the development of CCR5 targeting molecules that promote retention of the receptor inside the cell.

13.
Nat Cardiovasc Res ; 2(7): 673-692, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38666184

RESUMEN

Protein-protein interactions are essential for normal cellular processes and signaling events. Defining these interaction networks is therefore crucial for understanding complex cellular functions and interpretation of disease-associated gene variants. We need to build a comprehensive picture of the interactions, their affinities and interdependencies in the specific organ to decipher hitherto poorly understood signaling mechanisms through ion channels. Here we report the experimental identification of the ensemble of protein interactors for 13 types of ion channels in murine cardiac tissue. Of these, we validated the functional importance of ten interactors on cardiac electrophysiology through genetic knockouts in zebrafish, gene silencing in mice, super-resolution microscopy and patch clamp experiments. Furthermore, we establish a computational framework to reconstruct human cardiomyocyte ion channel networks from deep proteome mapping of human heart tissue and human heart single-cell gene expression data. Finally, we integrate the ion channel interactome with human population genetics data to identify proteins that influence the electrocardiogram (ECG). We demonstrate that the combined channel network is enriched for proteins influencing the ECG, with 44% of the network proteins significantly associated with an ECG phenotype. Altogether, we define interactomes of 13 major cardiac ion channels, contextualize their relevance to human electrophysiology and validate functional roles of ten interactors, including two regulators of the sodium current (epsin-2 and gelsolin). Overall, our data provide a roadmap for our understanding of the molecular machinery that regulates cardiac electrophysiology.

14.
Brain Behav Immun Health ; 32: 100675, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37600600

RESUMEN

The COVID-19 pandemic has resulted in significant morbidity and mortality worldwide. Management of the pandemic has relied mainly on SARS-CoV-2 vaccines, while alternative approaches such as meditation, shown to improve immunity, have been largely unexplored. Here, we probe the relationship between meditation and COVID-19 disease and directly test the impact of meditation on the induction of a blood environment that modulates viral infection. We found a significant inverse correlation between length of meditation practice and SARS-CoV-2 infection as well as accelerated resolution of symptomology of those infected. A meditation "dosing" effect was also observed. In cultured human lung cells, blood from experienced meditators induced factors that prevented entry of pseudotyped viruses for SARS-CoV-2 spike protein of both the wild-type Wuhan-1 virus and the Delta variant. We identified and validated SERPINA5, a serine protease inhibitor, as one possible protein factor in the blood of meditators that is necessary and sufficient for limiting pseudovirus entry into cells. In summary, we conclude that meditation can enhance resiliency to viral infection and may serve as a possible adjuvant therapy in the management of the COVID-19 pandemic.

15.
Pathogens ; 11(12)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36558759

RESUMEN

Metals have been used in medicine since ancient times for the treatment of different ailments with various elements such as iron, gold and arsenic. Metal complexes have also been reported to show antibiotic and antiparasitic activity. In this context, we tested the antiparasitic potential of 10 organotin (IV) derivatives from 4-(4-methoxyphenylamino)-4 oxobutanoic acid (MS26) against seven eukaryotic pathogens of medical importance: Leishmania donovani, Trypanosoma cruzi, Trypanosoma brucei, Entamoeba histolytica, Giardia lamblia, Naegleria fowleri and Schistosoma mansoni. Among the compounds with and without antiparasitic activity, compound MS26Et3 stood out with a 50% effective concentration (EC50) of 0.21 and 0.19 µM against promastigotes and intracellular amastigotes of L. donovani, respectively, 0.24 µM against intracellular amastigotes of T. cruzi, 0.09 µM against T. brucei, 1.4 µM against N. fowleri and impaired adult S. mansoni viability at 1.25 µM. In terms of host/pathogen selectivity, MS26Et3 demonstrated relatively mild cytotoxicity toward host cells with a 50% viability concentration of 4.87 µM against B10R cells (mouse monocyte cell line), 2.79 µM against C2C12 cells (mouse myoblast cell line) and 1.24 µM against HEK923 cells (human embryonic kidney cell line). The selectivity index supports this molecule as a therapeutic starting point for a broad spectrum antiparasitic alternative. Proteomic analysis of host cells infected with L. donovani after exposure to MS26Et3 showed a reduced expression of Rab7, which may affect the fusion of the endosome with the lysosome, and, consequently, impairing the differentiation of L. donovani to the amastigote form. Future studies to investigate the molecular target(s) and mechanism of action of MS26Et3 will support its chemical optimization.

16.
J Bacteriol ; 193(22): 6142-51, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21926233

RESUMEN

cspE, a member of the cspA family of cold shock proteins in Escherichia coli, is an early cold-inducible protein. The nucleic acid melting ability and transcription antiterminator activity of CspE have been reported to be critical for growth at low temperature. Here, we show that the cyclic AMP receptor protein (CRP), a global regulator involved in sugar metabolism, upregulates cspE in E. coli. Sequence analysis of the cspE upstream region revealed a putative CRP target site centered at -61.5 relative to the transcription start. The binding of CRP to this target site was demonstrated using electrophoretic mobility shift assays. The presence of this site was shown to be essential for P(cspE) activation by CRP. Mutational analysis of the binding site indicated that the presence of an intact second core motif is more important than the first core motif for CRP-P(cspE) interaction. Based on the promoter architecture, we classified P(cspE) as a class I CRP-dependent promoter. This was further substantiated by our data demonstrating the involvement of the AR1 domain of CRP in P(cspE) transcription. Furthermore, the substitutions in the key residues of the RNA polymerase α-subunit C-terminal domain (α-CTD), which are important for class I CRP-dependent transcription, showed the involvement of 265 and 287 determinants in P(cspE) transcription. In addition, the deletion of crp led to a growth defect at low temperature, suggesting that CRP plays an important role in cold adaptation.


Asunto(s)
Proteína Receptora de AMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de Choque Térmico/genética , Secuencia de Bases , Sitios de Unión , Frío , Proteína Receptora de AMP Cíclico/genética , Escherichia coli/genética , Proteínas de Choque Térmico/metabolismo , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Unión Proteica
17.
Biol Rev Camb Philos Soc ; 92(4): 1843-1858, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28980434

RESUMEN

Voltage-dependent anion channels (VDACs) are the gateway to mitochondrial processes, interlinking the cytosolic and mitochondrial compartments. The mitochondrion acts as a storehouse for cytochrome c, the effector of apoptosis, and hence VDACs become intricately involved in the apoptotic pathway. Isoform 1 of VDAC is abundant in the outer mitochondrial membrane of many cell types, while isoform 2 is the preferred channel in specialized cells including brain and some cancer cells. The primary role of VDACs is metabolite flux. The pro- and anti-apoptotic role of VDAC1 and VDAC2, respectively, are secondary, and are influenced by external factors and interacting proteins. Herein, we focus on the less-studied VDAC2, and shed light on its unique functions and features. VDAC2, along with sharing many of its functions with VDAC1, such as metabolite and Ca2+ transport, also has many delineating functions. VDAC2 is closely engaged in the gametogenesis and steroidogenesis pathways and in protection from oxidative stress as well as in neurodegenerative diseases like Alzheimer's and epilepsy. A closer examination of the functional pathways of VDACs indicates that the unique functions of VDAC2 are a result of the different interactome of this isoform. We couple functional differences to the structural and biophysical evidence obtained for the VDACs, and present a testament of why the two VDAC isoforms with >90% sequence similarity, are functionally diverse. Based on these differences, we suggest that the VDAC isoforms now be considered as paralogs. An in-depth understanding of VDAC2 will help us to design better biomolecule targets for cancer and neurodegenerative diseases.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Homeostasis/fisiología , Canal Aniónico 2 Dependiente del Voltaje/metabolismo , Animales , Humanos , Mitocondrias/fisiología , Neoplasias/genética , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Canal Aniónico 2 Dependiente del Voltaje/genética
18.
FEBS J ; 283(10): 1831-6, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26709731

RESUMEN

The voltage-dependent anion channels (VDACs) are the workforce of mitochondrial transport and as such are required for cellular metabolism. The elaborate interplay between mitochondria and the apoptotic pathway supports a role for VDACs as a major regulator of cell death. Although VDAC-1 has an established role in apoptosis and cell homeostasis, the role of VDAC-2 has been controversial. In humans, VDAC-2 is best known for its anti-apoptotic properties. In this Viewpoint, we associate the various functional studies on VDAC-2 with structural reports, to decode its unique behavior. The well-structured N-terminus, compact barrel form, differences in the loop regions, specific transmembrane segments and the abundance of thiols in VDAC-2 enable this isoform to perform a different subset of regulatory functions, establish anti-apoptotic features and contribute to gametogenesis. VDAC-2 structural features that demarcate it from VDAC-1 suggest that this particular isoform is better suited for regulating reactive oxygen species, steroidogenesis and mitochondria-associated endoplasmic reticulum membrane regulatory pathways, with ion transport forming a secondary role. A better understanding of the unique structural features of the VDAC family will aid in the design of inhibitors that could alleviate irregularities in VDAC-controlled pathways.


Asunto(s)
Canales Iónicos/fisiología , Membranas Mitocondriales/fisiología , Canal Aniónico 2 Dependiente del Voltaje/fisiología , Animales , Humanos
19.
PLoS One ; 9(3): e92183, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24642864

RESUMEN

The anti-apoptotic 19-stranded transmembrane human voltage dependent anion channel isoform 2 (hVDAC-2) ß-barrel stability is crucial for anion transport in mitochondria. The role of the unusually high number of cysteine residues in this isoform is poorly understood. Using a Cys-less construct of hVDAC-2, we have investigated the contribution of cysteines to channel function, barrel stability and its influence on the strength of protein-micelle interactions. We observe that despite the overall preservation in barrel structure upon cysteine mutation, subtle local variations in the mode of interaction of the barrel with its refolded micellar environment arise, which may manifest itself in the channel activity of both the proteins.Fluorescence measurements of the Trp residues in hVDAC-2 point to possible differences in the association of the barrel with lauryldimethylamine oxide (LDAO) micelles. Upon replacement of cysteines in hVDAC-2, our data suggests greater barrel rigidity by way of intra-protein interactions. This, in turn, lowers the equilibrium barrel thermodynamic parameters in LDAOby perturbing the stability of the protein-micelle complex. In addition to this, we also find a difference in the cooperativity of unfolding upon increasing the LDAO concentration, implying the importance of micelle concentration and micelle-protein ratios on the stability of this barrel. Our results indicate that the nine cysteine residues of hVDAC-2 are the key in establishing strong(er) barrel interactions with its environment and also impart additional malleability to the barrel scaffold.


Asunto(s)
Cisteína/química , Mitocondrias/química , Canal Aniónico 2 Dependiente del Voltaje/química , Sustitución de Aminoácidos , Cisteína/genética , Dimetilaminas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Micelas , Mitocondrias/metabolismo , Modelos Moleculares , Pliegue de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinámica , Triptófano/química , Triptófano/genética , Canal Aniónico 2 Dependiente del Voltaje/genética , Canal Aniónico 2 Dependiente del Voltaje/metabolismo
20.
PLoS One ; 9(1): e87701, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24494036

RESUMEN

Delineating the kinetic and thermodynamic factors which contribute to the stability of transmembrane ß-barrels is critical to gain an in-depth understanding of membrane protein behavior. Human mitochondrial voltage-dependent anion channel isoform 2 (hVDAC-2), one of the key anti-apoptotic eukaryotic ß-barrel proteins, is of paramount importance, owing to its indispensable role in cell survival. We demonstrate here that the stability of hVDAC-2 bears a strong kinetic contribution that is dependent on the absolute micellar concentration used for barrel folding. The refolding efficiency and ensuing stability is sensitive to the lipid-to-protein (LPR) ratio, and displays a non-linear relationship, with both low and high micellar amounts being detrimental to hVDAC-2 structure. Unfolding and aggregation process are sequential events and show strong temperature dependence. We demonstrate that an optimal lipid-to-protein ratio of 2600∶1 - 13,000∶1 offers the highest protection against thermal denaturation. Activation energies derived only for lower LPRs are ∼17 kcal mol(-1) for full-length hVDAC-2 and ∼23 kcal mol(-1) for the Cys-less mutant, suggesting that the nine cysteine residues of hVDAC-2 impart additional malleability to the barrel scaffold. Our studies reveal that cysteine residues play a key role in the kinetic stability of the protein, determine barrel rigidity and thereby give rise to strong micellar association of hVDAC-2. Non-linearity of the Arrhenius plot at high LPRs coupled with observation of protein aggregation upon thermal denaturation indicates that contributions from both kinetic and thermodynamic components stabilize the 19-stranded ß-barrel. Lipid-protein interaction and the linked kinetic contribution to free energy of the folded protein are together expected to play a key role in hVDAC-2 recycling and the functional switch at the onset of apoptosis.


Asunto(s)
Cisteína , Micelas , Proteínas Mitocondriales , Desplegamiento Proteico , Canal Aniónico 2 Dependiente del Voltaje/química , Humanos , Cinética , Metabolismo de los Lípidos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Desnaturalización Proteica , Isoformas de Proteínas , Estabilidad Proteica , Termodinámica , Canal Aniónico 2 Dependiente del Voltaje/genética , Canal Aniónico 2 Dependiente del Voltaje/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA