Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Anal Chem ; 96(27): 10877-10885, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38917090

RESUMEN

Scanning electrochemical microscopy (SECM) is a technique for imaging electrochemical reactions at a surface. The interaction between electrochemical reactions occurring at the sample and scanning electrode tip is quite complicated and requires computer modeling to obtain quantitative information from SECM images. Often, existing computer models must be modified, or a new model must be created from scratch to fit kinetic parameters for different reactive features. This work presents a method that can simulate the SECM image of a reactive feature of any shape on a flat surface which is coupled to a computer program which effectuates the automated fitting of kinetic information from these images. This fitting program is evaluated along with several methods for estimating the shapes of reactive features from their SECM images. Estimates of the reactive feature shape from SECM images were not sufficiently accurate and produced median relative errors for the surface rate constant that were >50%. Fortunately, more precise techniques for imaging the reactive features such as optical microscopy can supply sufficiently accurate shapes for the fitting procedure to produce accurate results. Fits of simulated SECM images using the actual shape from the simulation produced median relative errors for the surface rate constant that were <10% for the smallest reactive features tested. This method was applied to the SECM images of aluminum alloy AA7075 which revealed diffusion-limited kinetics for ferrocene methanol reduction over inclusions in the surface of the alloy.

2.
Anal Chem ; 96(19): 7394-7400, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38696447

RESUMEN

Scanning electrochemical cell microscopy is a useful technique for determining variations in corrosion behavior across a surface. However, the numerous options for experimental parameters and little understanding of their effect on the corroding system render comparisons of results between studies difficult. Herein, we explore changes in corrosion behavior of two martensitic stainless steels, a cast CA6NM and a wrought S41500, as a result of the chosen experimental parameters, including scan rate, approach potential, surface oil immersion, and tip aperture diameter. The study demonstrates that these experimental parameters can be controlled to probe oxide passivation kinetics and single pitting events by changing the surface state and cathodic currents. We measured the pitting and repassivation kinetics of a single pit and determined the compositional change of the Al2O3 inclusion site initiation point. Hundreds of data points were measured within 17 h of experimental time on the stainless steel samples, allowing statistical averages of corrosion and pitting values. This work will open new avenues for fine-tuning various corrosion aspects at the microscale, thereby contributing to a deeper understanding of the corrosion processes and mechanisms of diverse materials.

3.
Anal Chem ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39253857

RESUMEN

Scanning electrochemical cell microscopy is becoming the tool of choice for the investigation of localized metal corrosion. Typically, potentiodynamic polarization measurements in scanning electrochemical cell microscopy are performed at high potential scan rates. However, Tafel extrapolation applied to high-scan-rate potentiodynamic polarization curves would yield inaccurate corrosion kinetics due to the interference of double-layer charging current or mass transport of species in the metal oxide. Instead, the high field model was used to simulate the potentiodynamic polarization curves of pure aluminum at 25, 50, 100, and 200 mV/s in neutral and acidic phosphate solutions, thus enabling quantitative analysis of local corrosion kinetics by fitting the potentiodynamic polarization curve.

4.
Langmuir ; 40(3): 1623-1632, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38194503

RESUMEN

Biofilm infections are a major cause of food poisoning and hospital-acquired infections. Quaternary ammonium compounds are a group of effective disinfectants widely used in industry and households, yet their efficacy is lessened when used as antibiofilm agents compared to that against planktonic bacteria. It is therefore necessary to identify alternative formulations of quaternary ammonium compounds to achieve an effective biofilm dispersal. Quaternary ammonium amphiphiles can form vesicular structures termed "quatsomes" in the presence of cholesterol. In addition to their intrinsic antimicrobial properties, quatsomes can also be used for the delivery of other types of antibiotics or biomarkers. In this study, quatsomes were prepared from binary mixtures of cholesterol and mono- or dialkyl-quaternary ammonium compounds; then, the integrity and stability of their vesicular structure were assessed and related to monomer chain number and chain length. The quatsomes were used to treat Pseudomonas aeruginosa biofilms, showing effective antibiofilm abilities comparable to those of their monomers. A systematic liquid chromatography-mass spectrometry method for quantifying quatsome vesicle components was also developed and used to establish the significance of cholesterol in the quatsome self-assembly processes.


Asunto(s)
Antiinfecciosos , Pseudomonas aeruginosa , Compuestos de Amonio Cuaternario , Biopelículas , Antibacterianos/farmacología , Colesterol , Pruebas de Sensibilidad Microbiana
5.
Anal Chem ; 94(42): 14603-14610, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36214771

RESUMEN

In single-channel scanning electrochemical cell microscopy, the applied potential during the approach of a micropipette to the substrate generates a transient current upon droplet contact with the substrate. Once the transient current exceeds a set threshold, the micropipette is automatically halted. Currently, the effect of the approach potential on the subsequent electrochemical measurements, such as the open-circuit potential and potentiodynamic polarization, is considered to be inconsequential. Herein, we demonstrate that the applied approach potential does impact the extent of probe-to-substrate interaction and subsequent microscale electrochemical measurements on aluminum alloy AA7075-T73.


Asunto(s)
Microscopía , Óxidos , Aluminio , Aleaciones , Oxígeno
6.
Anal Chem ; 94(44): 15315-15323, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36282249

RESUMEN

Scanning electrochemical microscopy (SECM) is a powerful technique for imaging the electrochemical reactivity of a surface. Unfortunately, SECM images are mainly used qualitatively. Kinetics of reactions at the surface are almost exclusively obtained from the microelectrode current as it approaches the surface, called an approach curve. The approach curve method is excellent when the reaction at the surface has the same kinetics everywhere, but was not designed to fit the kinetics of finite-sized reactive features. We propose a method for extracting kinetics, feature area, and microelectrode tip-to-substrate distance from SECM images by fitting with simulated images of reactive discs using the Levenberg-Marquardt algorithm. The area of experimental reactive features can be fit to within 10% if the underlying feature is roughly disc-shaped. When the reaction at simulated reactive features is activation-limited, the rate constant can be fit to within 15% of the true value. This work heralds the beginning of quantifying kinetics from SECM images.


Asunto(s)
Microscopía Electroquímica de Rastreo , Cinética , Microelectrodos
7.
Anal Chem ; 94(40): 13852-13859, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36166706

RESUMEN

Scanning electrochemical microscopy (SECM) has matured as a technique for studying local electrochemical processes. The feedback mode is most commonly used for extracting quantitative kinetic information. However, approaching individual regions of interest, as is commonly done, does not take full advantage of the spatial resolution that SECM has to offer. Moreover, fitting of experimental approach curves remains highly subjective due to the manner of estimating the tip-to-substrate distance. We address these issues using negative or positive feedback currents as a reference to calculate the tip-to-substrate distance directly for quantitative kinetic fitting of approach curves and line profiles. The method was first evaluated by fitting simulated data and then tested experimentally by resolving negative feedback and intermediate kinetics behavior in a spatially controlled fashion using (i) a flat, binary substrate composed of Au and SiO2 segments and (ii) a dual-mediator system for live-cell measurements. The methodology developed herein, named quantitative feedback referencing (QFR), improves fitting accuracy, removes fitting subjectivity, and avoids substrate-microelectrode contact.


Asunto(s)
Dióxido de Silicio , Electroquímica/métodos , Retroalimentación , Cinética , Microscopía Electroquímica de Rastreo
8.
Langmuir ; 38(14): 4396-4406, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35348341

RESUMEN

Quatsomes are a class of nonphospholipid vesicles in which bilayers are formed from mixtures of quaternary ammonium (QA) amphiphiles and sterols. We describe the formation of oxidation and acid-sensitive quatsome-like vesicles and other bilayer assemblies from mixtures of a ferrocenylated QA amphiphile (FTDMA) and several cholesterol derivatives. The influence of the sterol and the preparation method (extrusion or probe sonication) on the stability and morphology of the resulting vesicles is explored; a variety of structures can be obtained from small (ca. 30 nm) spherical unilamellar and oligolamellar quatsome-like vesicles to large (ca. 200 nm) multilamellar onion-like vesicles to extended nanoribbons many micrometers long. FTDMA-sterol vesicles undergo drastic shifts in vesicle and membrane structure when treated with a chemical oxidant (Frémy's salt), a feature previously observed in liposomes containing FTDMA and now confirmed in nonphospholipid vesicles. Size distributions of spherical quatsome-like vesicles obtained from cryo-TEM are examined to estimate the membrane bending rigidity, and a hypothesis is presented to explain the underlying mechanism of the profound membrane alterations observed as a consequence of ferrocene oxidation.


Asunto(s)
Compuestos de Amonio , Nanotubos de Carbono , Fitosteroles , Compuestos Ferrosos , Liposomas/química , Metalocenos , Cebollas , Esteroles/química
9.
Anal Chem ; 93(28): 9657-9662, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34236831

RESUMEN

Quantitative scanning micropipette contact method measurements are subject to the deleterious effects of reference electrode interference. The commonly used Ag/AgCl wire quasi-reference counter electrode in the miniaturized electrochemical cell of the scanning micropipette contact method was found to leak Ag+ into the electrolyte solution. The reduction of these Ag+ species at the working electrode surface generates a faradaic current, which significantly affects the low magnitude currents inherently measured in the scanning micropipette contact method. We demonstrate that, during the microscopic corrosion investigation of the AA7075-T73 alloy using the oil-immersed scanning micropipette contact method, the cathodic current was increased by the Ag+ reduction, resulting in positive shifts of corrosion potentials. The use of a leak-free Ag/AgCl electrode or an extended distance between the Ag/AgCl wire and micropipette tip droplet eliminated the Ag+ contamination, making it possible to measure accurate corrosion potentials during the oil-immersed scanning micropipette contact method measurements.


Asunto(s)
Aleaciones , Plata , Corrosión , Electrodos
10.
Anal Chem ; 93(49): 16504-16511, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34843206

RESUMEN

Glycine is an important biomarker in clinical analysis due to its involvement in multiple physiological processes. As such, the need for low-cost analytical tools for glycine detection is growing. As a neurotransmitter, glycine is involved in inhibitory and excitatory neurochemical transmission in the central nervous system. In this work, we present a 10 µM Pt-based electrochemical enzymatic biosensor based on the flavoenzyme glycine oxidase (GO) for localized real-time measurements of glycine. Among GO variants at position 244, the H244K variant with increased glycine turnover was selected to develop a functional biosensor. This biosensor relies on amperometric readouts and does not require additional redox mediators. The biosensor was characterized and applied for glycine detection from cells, mainly HEK 293 cells and primary rat astrocytes. We have identified an enzyme, GO H244K, with increased glycine turnover using mutagenesis but which can be developed into a functional biosensor. Noteworthy, a glycine release of 395.7 ± 123 µM from primary astrocytes was measured, which is ∼fivefold higher than glycine release from HEK 293 cells (75.4 ± 3.91 µM) using the GO H244K biosensor.


Asunto(s)
Técnicas Biosensibles , Glicina , Aminoácido Oxidorreductasas , Animales , Células HEK293 , Humanos , Ratas
11.
Langmuir ; 37(38): 11222-11232, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34524822

RESUMEN

Efficient delivery of therapeutic compounds to their sites of action has been a ubiquitous concern throughout the history of human medicine. The tumor microenvironment offers a variety of endogenous stimuli that may be exploited by a responsive nanocarrier, including heterogeneities in redox potential. In the early stages of the design of such responsive delivery systems, it is necessary to develop a comprehensive understanding of the biophysical mechanism by which the stimulus response occurs, as well as how the response may change from the inclusion of cargo compounds. We describe the optimization of lipid compositions for liposomes containing synthetic ferrocene-appended lipids to achieve highly efficient loading of doxorubicin via an ethylenediaminetetraacetic acid (EDTA) gradient. Liposomes containing ferrocenylated phospholipid are shown to be unstable to the loading conditions, while those including a ferrocenylated alkylammonium amphiphile obtain a near-quantitative loading efficiency. Calorimetric studies demonstrate that this instability is the consequence of the relative degree of lipid hydrolysis that occurs under the acidic loading conditions. Drug-loaded liposomes of the optimized composition are studied by cryo-TEM; the presence of doxorubicin aggregates is observed inside vesicles, and doxorubicin release, as well as the changes in membrane structure resulting from oxidant treatment, is also observed by cryogenic transmission electron microscopy (cryo-TEM). These results further demonstrate the potential of ferrocene lipids in the design of redox-responsive nanocarriers and begin to explore their possible role as probes of membrane dynamics.


Asunto(s)
Doxorrubicina , Liposomas , Sistemas de Liberación de Medicamentos , Ácido Edético , Humanos , Lípidos , Metalocenos
12.
Anal Bioanal Chem ; 413(27): 6793-6802, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33791826

RESUMEN

Challenges facing enzyme-based electrochemical sensors include substrate specificity, batch to batch reproducibility, and lack of quantitative metrics related to the effect of enzyme immobilization. We present a quick, simple, and general approach for measuring the effect of immobilization and cross-linking on enzyme activity and substrate specificity. The method can be generalized for electrochemical biosensors using an enzyme that releases hydrogen peroxide during its catalytic cycle. Using as proof of concept RgDAAO-based electrochemical biosensors, we found that the Michaelis-Menten constant (Km) decreases post immobilization, hinting at alterations in the enzyme kinetic properties and thus substrate specificity. We confirm the decrease in Km electrochemically by characterizing the substrate specificity of the immobilized RgDAAO using chronoamperometry. Our results demonstrate that enzyme immobilization affects enzyme substrate specificity and this must be carefully evaluated during biosensor development.


Asunto(s)
D-Aminoácido Oxidasa/química , D-Aminoácido Oxidasa/metabolismo , Técnicas Electroquímicas/métodos , Alanina/metabolismo , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Catálisis , D-Aminoácido Oxidasa/genética , Técnicas Electroquímicas/instrumentación , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/genética , Enzimas Inmovilizadas/metabolismo , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/metabolismo , Cinética , Microelectrodos , Fenilendiaminas/química , Prueba de Estudio Conceptual , Reproducibilidad de los Resultados , Serina/metabolismo , Especificidad por Sustrato
13.
Anal Chem ; 92(5): 3958-3963, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32026674

RESUMEN

To achieve super-resolution scanning electrochemical microscopy (SECM), we must overcome the theoretical limitation associated with noncontact electrochemical imaging of surface-generated species. This is the requirement for mass transfer to the electrode, which gives rise to the diffusional broadening of surface features. In this work, a procedure is developed for overcoming this limitation and thus generating "super-resolved" images using point spread function (PSF)-based deconvolution, where the point conductor plays the same role as the point emitter in optical imaging. In contrast to previous efforts in SECM towards this goal, our method uses a finite element model to generate a pair of corresponding blurred and sharp images for PSF estimation, avoiding the need to perform parameter optimization for effective deconvolution. It can therefore be used for retroactive data treatment and an enhanced understanding of the structure-property relationships that SECM provides.

14.
Anal Chem ; 92(18): 12415-12422, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32786459

RESUMEN

This work reports the development of an oil-immersed scanning micropipette contact method, a variant of the scanning micropipette contact method, where a thin layer of oil wets the investigated substrate. The oil-immersed scanning micropipette contact method significantly increases the droplet stability, allowing for prolonged mapping and the use of highly evaporative saline solutions regardless of ambient humidity levels. This systematic mapping technique was used to conduct a detailed investigation of localized corrosion taking place at the surface of an AA7075-T73 aluminum alloy in a 3.5 wt % NaCl electrolyte solution, which is typically challenging in the conventional scanning micropipette contact method. Maps of corrosion potentials and corrosion currents extracted from potentiodynamic polarization curves showed good correlations with the chemical composition of surface features and known galvanic interactions at the microscale level. This demonstrates the viability of the oil-immersed scanning micropipette contact method and opens up the avenue to mechanistic corrosion investigations at the microscale level using aqueous solutions that are prone to evaporation under noncontrolled humidity levels.

15.
Anal Chem ; 92(16): 10908-10912, 2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32658460

RESUMEN

The trade-off between energy density and power capabilities is a challenge for Li-ion battery design as it highly depends on the complex porous structures that holds the liquid electrolyte. Specifically, mass-transport limitations lead to large concentration gradients in the solution-phase and subsequently to crippling overpotentials. The direct study of these solution-phase concentration profiles in Li-ion battery positive electrodes has been elusive, in part because they are shielded by an opaque and paramagnetic matrix. Herein we present a new methodology employing synchrotron hard X-ray fluorescence to observe the concentration gradient formation within Li-ion battery electrodes in operando. This methodology is substantiated with data collected on a model LiFePO4/Li cell using a 1 M LiAsF6 in 1:1 ethylene carbonate/dimethyl carbonate (EC/DMC) electrolyte under galvanostatic and intermittent charge profiles. As such, the technique holds great promise for optimization of new composite electrodes and for numerical model validation.

16.
Anal Chem ; 92(15): 10300-10307, 2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32640786

RESUMEN

The charge storage and membrane applications of graphene oxide (GO) materials are dictated by its intrinsic material properties. Structure-function relationships correlating periodic parameters, such as the hydrated ion radius and ion-GO interactions, are currently lacking yet are needed to provide insight on the charge storage and ion transport mechanism. We report the use of scanning ion conductance microscopy to measure the ion permeability of GO films and evaluate its relationship with the measured capacitance. We demonstrate that species (namely K+) with strong electrostatic interactions with the oxygen functionalities of GO provide the benefit of higher capacitance but suffer from inhibited ion mobility due to constriction of the GO interlayer spacing.

17.
Anal Chem ; 91(24): 15718-15725, 2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31741380

RESUMEN

Composite electrodes can significantly improve the performance of an electrochemical device by maximizing surface area and active material loading. Typically, additives such as carbon are used to improve conductivity and a polymer is used as a binder, leading to a heterogeneous surface film with thickness on the order of 10s of micrometers. For such composite electrodes, good ionic conduction within the film is critical to capitalize on the increased loading of active material and surface area. Ionic conductivity within a film can be tricky to measure directly, and homogenization models based on porosity are often used as a proxy. SICM has traditionally been a topography-mapping microscopy method for which we here outline a new function and demonstrate its capacity for measuring ion conductivity within a lithium-ion battery film.

18.
Anal Chem ; 91(6): 3944-3950, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30777431

RESUMEN

The edge of a reactive or topographical feature is hard to estimate from feedback-based scanning electrochemical microscopy due to diffusional blurring, but is crucial to determining the accurate size and shape of these features. In this work, numerical simulations are used to demonstrate that the inflection point in a 1D line scan corresponds well to the true feature edge. This approach is then applied in 2D using the Canny algorithm to experimental images of two model substrates and a biological sample. This approach circumvents the need for aligning the imaged region between separate microscopy techniques, reveals hidden details embedded in SECM images, and allows individual features to be separated from their background more effectively.

19.
Anal Chem ; 91(3): 2312-2318, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30618235

RESUMEN

One of the long-standing challenges to performing electrogenerated chemiluminescence (ECL) research is the need for dedicated instrumentation or highly customized cells to achieve reproducibility. This manuscript describes an approach to designing ECL systems through the hyphenation of existing laboratory instruments, which provide innate time correlation of electrochemical and emission data. This design methodology lowers the entry barrier required to obtaining reproducible ECL measurements and provides flexibility in the scope of applications. Uniquely, the simplicity of this system's experimental interface, a spectrochemical quartz cuvette, readily enables collaboration with finite element modeling that simulates ECL occurring in the cuvette-based cell. This combination of empirical and simulation data allowed for the investigation of the intertwined kinetics behind the coreactant ECL mechanism of tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)32+) and tripropylamine (TPA). The complexity of the system measurable via the hyphenation methodology was further scaled though the addition of tris[2-(4,6-difluorophenyl)pyridinato-C2, N] iridium(III) (Ir(dFppy)3) and the observation of real time multiplexing.

20.
Langmuir ; 35(16): 5608-5616, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30916976

RESUMEN

We report a redox-responsive liposomal system capable of oxidatively triggered disassembly. We describe the synthesis, electrochemical characterization, and incorporation into vesicles of an alternative redox lipid with significantly improved synthetic efficiency and scalability compared to a ferrocene-appended phospholipid previously employed by our group in giant vesicles. The redox-triggered disassembly of both redox lipids is examined in nanosized liposomes as well as the influence of cholesterol mole fraction on liposome disassembly and suitability of various chemical oxidants for  in vitro disassembly experiments. Electronic structure density functional theory calculations of membrane-embedded ferrocenes are provided to characterize the role of charge redistribution in the initial stages of the disassembly process.


Asunto(s)
Compuestos Ferrosos/química , Liposomas/química , Metalocenos/química , Nanopartículas/química , Tensoactivos/química , Estructura Molecular , Oxidación-Reducción , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA