Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38878778

RESUMEN

Inflammation-induced neurodegeneration is a defining feature of multiple sclerosis (MS), yet the underlying mechanisms remain unclear. By dissecting the neuronal inflammatory stress response, we discovered that neurons in MS and its mouse model induce the stimulator of interferon genes (STING). However, activation of neuronal STING requires its detachment from the stromal interaction molecule 1 (STIM1), a process triggered by glutamate excitotoxicity. This detachment initiates non-canonical STING signaling, which leads to autophagic degradation of glutathione peroxidase 4 (GPX4), essential for neuronal redox homeostasis and thereby inducing ferroptosis. Both genetic and pharmacological interventions that target STING in neurons protect against inflammation-induced neurodegeneration. Our findings position STING as a central regulator of the detrimental neuronal inflammatory stress response, integrating inflammation with glutamate signaling to cause neuronal cell death, and present it as a tractable target for treating neurodegeneration in MS.

2.
J Clin Monit Comput ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512361

RESUMEN

Aneurysmal subarachnoid haemorrhage (aSAH) can lead to complications such as acute hydrocephalic congestion. Treatment of this acute condition often includes establishing an external ventricular drainage (EVD). However, chronic hydrocephalus develops in some patients, who then require placement of a permanent ventriculoperitoneal (VP) shunt. The aim of this study was to employ recurrent neural network (RNN)-based machine learning techniques to identify patients who require VP shunt placement at an early stage. This retrospective single-centre study included all patients who were diagnosed with aSAH and treated in the intensive care unit (ICU) between November 2010 and May 2020 (n = 602). More than 120 parameters were analysed, including routine neurocritical care data, vital signs and blood gas analyses. Various machine learning techniques, including RNNs and gradient boosting machines, were evaluated for their ability to predict VP shunt dependency. VP-shunt dependency could be predicted using an RNN after just one day of ICU stay, with an AUC-ROC of 0.77 (CI: 0.75-0.79). The accuracy of the prediction improved after four days of observation (Day 4: AUC-ROC 0.81, CI: 0.79-0.84). At that point, the accuracy of the prediction was 76% (CI: 75.98-83.09%), with a sensitivity of 85% (CI: 83-88%) and a specificity of 74% (CI: 71-78%). RNN-based machine learning has the potential to predict VP shunt dependency on Day 4 after ictus in aSAH patients using routine data collected in the ICU. The use of machine learning may allow early identification of patients with specific therapeutic needs and accelerate the execution of required procedures.

3.
Alzheimers Dement ; 20(2): 1166-1174, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37920945

RESUMEN

INTRODUCTION: We set out to identify tau PET-positive (A+T+) individuals among amyloid-beta (Aß) positive participants using plasma biomarkers. METHODS: In this cross-sectional study we assessed 234 participants across the AD continuum who were evaluated by amyloid PET with [18 F]AZD4694 and tau-PET with [18 F]MK6240 and measured plasma levels of total tau, pTau-181, pTau-217, pTau-231, and N-terminal tau (NTA-tau). We evaluated the performances of plasma biomarkers to predict tau positivity in Aß+ individuals. RESULTS: Highest associations with tau positivity in Aß+ individuals were found for plasma pTau-217 (AUC [CI95% ] = 0.89 [0.82, 0.96]) and NTA-tau (AUC [CI95% ] = 0.88 [0.91, 0.95]). Combining pTau-217 and NTA-tau resulted in the strongest agreement (Cohen's Kappa = 0.74, CI95%  = 0.57/0.90, sensitivity = 92%, specificity = 81%) with PET for classifying tau positivity. DISCUSSION: The potential for identifying tau accumulation in later Braak stages will be useful for patient stratification and prognostication in treatment trials and in clinical practice. HIGHLIGHTS: We found that in a cohort without pre-selection pTau-181, pTau-217, and NTA-tau showed the highest association with tau PET positivity. We found that in Aß+ individuals pTau-217 and NTA-tau showed the highest association with tau PET positivity. Combining pTau-217 and NTA-tau resulted in the strongest agreement with the tau PET-based classification.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Proteínas tau , Estudios Transversales , Péptidos beta-Amiloides , Biomarcadores , Tomografía de Emisión de Positrones
4.
J Neuroinflammation ; 20(1): 278, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001539

RESUMEN

INTRODUCTION: Synaptic loss is closely associated with tau aggregation and microglia activation in later stages of Alzheimer's disease (AD). However, synaptic damage happens early in AD at the very early stages of tau accumulation. It remains unclear whether microglia activation independently causes synaptic cleavage before tau aggregation appears. METHODS: We investigated 104 participants across the AD continuum by measuring 14-3-3 zeta/delta ([Formula: see text]) as a cerebrospinal fluid biomarker for synaptic degradation, and fluid and imaging biomarkers of tau, amyloidosis, astrogliosis, neurodegeneration, and inflammation. We performed correlation analyses in cognitively unimpaired and impaired participants and used structural equation models to estimate the impact of microglia activation on synaptic injury in different disease stages. RESULTS: 14-3-3 [Formula: see text] was increased in participants with amyloid pathology at the early stages of tau aggregation before hippocampal volume loss was detectable. 14-3-3 [Formula: see text] correlated with amyloidosis and tau load in all participants but only with biomarkers of neurodegeneration and memory deficits in cognitively unimpaired participants. This early synaptic damage was independently mediated by sTREM2. At later disease stages, tau and astrogliosis additionally mediated synaptic loss. CONCLUSIONS: Our results advertise that sTREM2 is mediating synaptic injury at the early stages of tau accumulation, underlining the importance of microglia activation for AD disease propagation.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Gliosis , Proteínas tau/metabolismo , Proteínas 14-3-3
5.
Acta Neuropathol ; 146(3): 387-394, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37452829

RESUMEN

Dysautonomia has substantially impacted acute COVID-19 severity as well as symptom burden after recovery from COVID-19 (long COVID), yet the underlying causes remain unknown. Here, we hypothesized that vagus nerves are affected in COVID-19 which might contribute to autonomic dysfunction. We performed a histopathological characterization of postmortem vagus nerves from COVID-19 patients and controls, and detected SARS-CoV-2 RNA together with inflammatory cell infiltration composed primarily of monocytes. Furthermore, we performed RNA sequencing which revealed a strong inflammatory response of neurons, endothelial cells, and Schwann cells which correlated with SARS-CoV-2 RNA load. Lastly, we screened a clinical cohort of 323 patients to detect a clinical phenotype of vagus nerve affection and found a decreased respiratory rate in non-survivors of critical COVID-19. Our data suggest that SARS-CoV-2 induces vagus nerve inflammation followed by autonomic dysfunction which contributes to critical disease courses and might contribute to dysautonomia observed in long COVID.


Asunto(s)
COVID-19 , Disautonomías Primarias , Humanos , COVID-19/complicaciones , SARS-CoV-2 , Síndrome Post Agudo de COVID-19 , ARN Viral , Células Endoteliales , Inflamación , Disautonomías Primarias/etiología , Nervio Vago
6.
Eur J Neurol ; 30(8): 2297-2304, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37159495

RESUMEN

BACKGROUND AND PURPOSE: This study aimed to investigate if pre-existing neurological conditions, such as dementia and a history of cerebrovascular disease, increase the risk of severe outcomes including death, intensive care unit (ICU) admission and vascular events in patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in 2022, when Omicron was the predominant variant. METHODS: A retrospective analysis was conducted of all patients with SARS-CoV-2 infection, confirmed by polymerase chain reaction test, admitted to the University Medical Center Hamburg-Eppendorf from 20 December 2021 until 15 August 2022. In all, 1249 patients were included in the study. In-hospital mortality was 3.8% and the ICU admission rate was 9.9%. Ninety-three patients with chronic cerebrovascular disease and 36 patients with pre-existing all-cause dementia were identified and propensity score matching by age, sex, comorbidities, vaccination status and dexamethasone treatment was performed in a 1:4 ratio with patients without the respective precondition using nearest neighbor matching. RESULTS: Analysis revealed that neither pre-existing cerebrovascular disease nor all-cause dementia increased mortality or the risk for ICU admission. All-cause dementia in the medical history also had no effect on vascular complications under investigation. In contrast, an increased odds ratio for both pulmonary artery embolism and secondary cerebrovascular events was observed in patients with pre-existing chronic cerebrovascular disease and myocardial infarction in the medical history. CONCLUSION: These findings suggest that patients with pre-existing cerebrovascular disease and myocardial infarction in their medical history may be particularly susceptible to vascular complications following SARS-CoV-2 infection with presumed Omicron variant.


Asunto(s)
COVID-19 , Trastornos Cerebrovasculares , Infarto del Miocardio , Humanos , Estudios Retrospectivos , COVID-19/complicaciones , COVID-19/epidemiología , SARS-CoV-2 , Trastornos Cerebrovasculares/epidemiología
7.
Eur J Clin Pharmacol ; 79(9): 1219-1228, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37436495

RESUMEN

PURPOSE: We evaluated the safety, pharmacokinetics (PK), pharmacodynamics (PD), and immunogenicity of intravenous (IV) inclacumab, a fully human IgG4 anti-P-selectin monoclonal antibody in development for the treatment of sickle cell disease, at doses up to and exceeding those previously tested in healthy individuals. METHODS: In this phase 1, open-label, single-ascending-dose study, 15 healthy participants were enrolled into cohorts receiving 20 mg/kg (n = 6) or 40 mg/kg (n = 9) IV inclacumab and observed for up to 29 weeks post-dose. Safety, PK parameters, thrombin receptor-activating peptide (TRAP)-activated platelet-leukocyte aggregate (PLA) formation, P-selectin inhibition, plasma soluble P-selectin, and anti-drug antibodies were characterized. RESULTS: Two inclacumab-related treatment-emergent adverse events were reported in 1 participant; no dose-limiting toxicities were observed. Plasma PK parameters were generally dose-proportional, with a terminal half-life of 13 to 17 days. Mean TRAP-activated PLA formation decreased within 3 h from the start of infusion, and inhibition was sustained for ~ 23 weeks. Mean P-selectin inhibition > 90% was observed up to 12 weeks post-dose. The mean ratio of free to total soluble P-selectin decreased rapidly from pre-dose to end of infusion, then increased gradually to 78% of the baseline ratio by week 29. Treatment-emergent anti-drug antibodies were observed in 2 of 15 participants (13%), without apparent impact on safety, PK, or PD. CONCLUSIONS: Inclacumab was well tolerated, with PK as expected for a monoclonal antibody against a membrane-bound target and a long duration of PD effects after both single IV doses, supporting a prolonged dosing interval. TRIAL REGISTRATION: ACTRN12620001156976; registered November 4, 2020.


Asunto(s)
Anemia de Células Falciformes , Anticuerpos Monoclonales , Humanos , Voluntarios Sanos , Anticuerpos Monoclonales/efectos adversos , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/inducido químicamente , Selectinas , Poliésteres , Método Doble Ciego , Relación Dosis-Respuesta a Droga
9.
Strahlenther Onkol ; 190(9): 839-46, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24715240

RESUMEN

BACKGROUND AND PURPOSE: Human Papillomavirus (HPV)-related head and neck squamous cell carcinoma (HNSCC) respond favourably to radiotherapy as compared to HPV-unrelated HNSCC. We investigated DNA damage response in HPV-positive and HPV-negative HNSCC cell lines aiming to identify mechanisms, which illustrate reasons for the increased sensitivity of HPV-positive cancers of the oropharynx. METHODS: Radiation response including clonogenic survival, apoptosis, DNA double-strand break (DSB) repair, and cell cycle redistribution in four HPV-positive (UM-SCC-47, UM-SCC-104, 93-VU-147T, UPCI:SCC152) and four HPV-negative (UD-SCC-1, UM-SCC-6, UM-SCC-11b, UT-SCC-33) cell lines was evaluated. RESULTS: HPV-positive cells were more radiosensitive (mean SF2: 0.198 range: 0.22-0.18) than HPV-negative cells (mean SF2: 0.34, range: 0.45-0.27; p = 0.010). Irradiated HPV-positive cell lines progressed faster through S-phase showing a more distinct accumulation in G2/M. The abnormal cell cycle checkpoint activation was accompanied by a more pronounced increase of cell death after x-irradiation and a higher number of residual and unreleased DSBs. CONCLUSIONS: The enhanced responsiveness of HPV-related HNSCC to radiotherapy might be caused by a higher cellular radiosensitivity due to cell cycle dysregulation and impaired DNA DSB repair.


Asunto(s)
Apoptosis/efectos de la radiación , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/radioterapia , Ciclo Celular/efectos de la radiación , Neoplasias de Oído, Nariz y Garganta/patología , Neoplasias de Oído, Nariz y Garganta/radioterapia , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/radioterapia , Células Tumorales Cultivadas/efectos de la radiación , Adulto , Anciano , Línea Celular Tumoral , Ensayo de Unidades Formadoras de Colonias , Fragmentación del ADN/efectos de la radiación , Reparación del ADN/efectos de la radiación , Femenino , Citometría de Flujo , Histonas/análisis , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Células Tumorales Cultivadas/patología
10.
J Biol Chem ; 287(10): 7182-9, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22249178

RESUMEN

Plasmodium falciparum-infected red blood cells adhere to endothelial cells, thereby obstructing the microvasculature. Erythrocyte adherence is directly associated with severe malaria and increased disease lethality, and it is mediated by the PfEMP1 family. PfEMP1 clustering in knob-like protrusions on the erythrocyte membrane is critical for cytoadherence, however the molecular mechanisms behind this system remain elusive. Here, we show that the intracellular domains of the PfEMP1 family (ATS) share a unique molecular architecture, which comprises a minimal folded core and extensive flexible elements. A conserved flexible segment at the ATS center is minimally restrained by the folded core. Yeast-two-hybrid data and a novel sequence analysis method suggest that this central segment contains a conserved protein interaction epitope. Interestingly, ATS in solution fails to bind the parasite knob-associated histidine-rich protein (KAHRP), an essential cytoadherence component. Instead, we demonstrate that ATS associates with PFI1780w, a member of the Plasmodium helical interspersed sub-telomeric (PHIST) family. PHIST domains are widespread in exported parasite proteins, however this is the first specific molecular function assigned to any variant of this family. We propose that PHIST domains facilitate protein interactions, and that the conserved ATS epitope may be targeted to disrupt the parasite cytoadherence system.


Asunto(s)
Epítopos/química , Plasmodium falciparum/química , Pliegue de Proteína , Proteínas Protozoarias/química , Epítopos/genética , Epítopos/metabolismo , Humanos , Malaria Falciparum/genética , Malaria Falciparum/metabolismo , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos
11.
Mol Ther ; 20(4): 727-35, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22314291

RESUMEN

Muscular dystrophies (MDs) are caused by genetic mutations in over 30 different genes, many of which encode for proteins essential for the integrity of muscle cell structure and membrane. Their deficiencies cause the muscle vulnerable to mechanical and biochemical damages, leading to membrane leakage, dystrophic pathology, and eventual loss of muscle cells. Recent studies report that MG53, a muscle-specific TRIM-family protein, plays an essential role in sarcolemmal membrane repair. Here, we show that systemic delivery and muscle-specific overexpression of human MG53 gene by recombinant adeno-associated virus (AAV) vectors enhanced membrane repair, ameliorated pathology, and improved muscle and heart functions in δ-sarcoglycan (δ-SG)-deficient TO-2 hamsters, an animal model of MD and congestive heart failure. In addition, MG53 overexpression increased dysferlin level and facilitated its trafficking to muscle membrane through participation of caveolin-3. MG53 also protected muscle cells by activating cell survival kinases, such as Akt, extracellular signal-regulated kinases (ERK1/2), and glycogen synthase kinase-3ß (GSK-3ß) and inhibiting proapoptotic protein Bax. Our results suggest that enhancing the muscle membrane repair machinery could be a novel therapeutic approach for MD and cardiomyopathy, as demonstrated here in the limb girdle MD (LGMD) 2F model.


Asunto(s)
Proteínas Portadoras/metabolismo , Terapia Genética/métodos , Insuficiencia Cardíaca/terapia , Distrofias Musculares/terapia , Sarcoglicanos/deficiencia , Animales , Proteínas Portadoras/genética , Caveolina 3/genética , Caveolina 3/metabolismo , Cricetinae , Dependovirus/genética , Insuficiencia Cardíaca/metabolismo , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Distrofias Musculares/metabolismo , Proteínas de Motivos Tripartitos
12.
Front Cardiovasc Med ; 10: 1200323, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456824

RESUMEN

Background: Chronic kidney disease (CKD) causes congestive heart failure (CHF) with systolic dysfunction and left ventricular hypertrophy (LVH), which is a major contributor to increased mortality in CKD patients. It remains unclear whether cardiovascular changes that occur during the course of CKD can be reversed when renal function is restored by transplantation. Methods: To investigate this, chronic kidney disease was established in F344 rats by subtotal nephrectomy (SNx) for 8 weeks, followed by transplantation of a functional kidney from an isogenic F344 donor. SNx rats without transplantation and sham-operated animals served as controls. Renal function was assessed before and throughout the experiment. In addition, cardiac ultrasound was performed at weeks 0, 8, 12 and 16. At the end of the experiment, intra-arterial blood pressure was measured and kidneys and hearts were histologically and molecularly examined. Results: Eight weeks after SNx, rats developed marked renal dysfunction associated with significant glomerulosclerosis and tubulointerstitial fibrosis, but also an increase in left ventricular mass. After transplantation, renal function normalized but relative heart weight and ventricular mass as assessed by ultrasound scans showed no reduction compared with SNx controls. However, left ventricular wall thickness, fractional shortening and ejection fraction was normalized by renal transplantation. At 8 weeks after kidney transplantation, cardiac expression of BNP and FGF23 was also at levels comparable to healthy controls, whereas these factors were significantly increased in SNx rats. Cardiac fibrosis, as measured by fibronectin mRNA expression, was completely normalized, whereas cardiac fibronectin protein was still slightly but not significantly increased in transplanted animals compared to controls. In addition, the myofibroblast marker collagen 1, as assessed by immunohistochemistry, was significantly increased in SNx rats and also normalized by renal transplantation. Interestingly, CD68+ macrophages were significantly reduced in the hearts of SNx rats and in transplanted animals at slightly higher levels compared to controls. Conclusion: Restoration of renal function by kidney transplantation normalized early cardiac changes at most functional and molecular levels, but did not completely reverse LVH. However, further studies are needed to determine whether restoration of renal function can also reverse LVH at a later time point.

13.
Neurol Res Pract ; 5(1): 17, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37143130

RESUMEN

BACKGROUND: Unpredictable vegetative deteriorations made the treatment of patients with acute COVID-19 on intensive care unit particularly challenging during the first waves of the pandemic. Clinical correlates of dysautonomia and their impact on the disease course in critically ill COVID-19 patients are unknown. METHODS: We retrospectively analyzed data collected during a single-center observational study (March 2020-November 2021) which was performed at the University Medical Center Hamburg-Eppendorf, a large tertiary medical center in Germany. All patients admitted to ICU due to acute COVID-19 disease during the study period were included (n = 361). Heart rate variability (HRV) and blood pressure variability (BPV) per day were used as clinical surrogates of dysautonomia and compared between survivors and non-survivors at different time points after admission. Intraindividual correlation of vital signs with laboratory parameters were calculated and corrected for age, sex and disease severity. RESULTS: Patients who deceased in ICU had a longer stay (median days ± IQR, survivors 11.0 ± 27.3, non-survivors 14.1 ± 18.7, P = 0.85), in contrast time spent under invasive ventilation was not significantly different (median hours ± IQR, survivors 322 ± 782, non-survivors 286 ± 434, P = 0.29). Reduced HRV and BPV predicted lethal outcome in patients staying on ICU longer than 10 days after adjustment for age, sex, and disease severity. Accordingly, HRV was significantly less correlated with inflammatory markers (e.g. CRP and Procalcitonin) and blood carbon dioxide in non-survivors in comparison to survivors indicating uncoupling between autonomic function and inflammation in non-survivors. CONCLUSIONS: Our study suggests autonomic dysfunction as a contributor to mortality in critically ill COVID-19 patients during the first waves of the pandemic. Serving as a surrogate for disease progression, these findings could contribute to the clinical management of COVID-19 patients admitted to the ICU. Furthermore, the suggested measure of dysautonomia and correlation with other laboratory parameters is non-invasive, simple, and cost-effective and should be evaluated as an additional outcome parameter in septic patients treated in the ICU in the future.

14.
Brain Commun ; 5(2): fcad092, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37038497

RESUMEN

Persistent somatic and neuropsychiatric symptoms have been frequently described in patients after infection with severe acute respiratory syndrome coronavirus 2 even after a benign clinical course of the acute infection during the early phases of the coronavirus severe acute respiratory syndrome coronavirus 2 pandemic and are part of Long COVID. The Omicron variant emerged in November 2021 and has rapidly become predominant due to its high infectivity and suboptimal vaccine cross-protection. The frequency of neuropsychiatric post-acute sequelae after infection with the severe acute respiratory syndrome coronavirus 2 Omicron and adequate vaccination status is not known. Here, we aimed to characterize post-acute symptoms in individuals with asymptomatic or mildly symptomatic breakthrough infection with severe acute respiratory syndrome coronavirus 2. These individuals had either proven infection with the Omicron variant (n = 157) or their infection occurred in 2022 where Omicron was the predominant variant of severe acute respiratory syndrome coronavirus 2 in Germany (n = 107). This monocentric cross-sectional study was conducted at the University Medical Center Hamburg-Eppendorf between 11 February 2022 and 11 April 2022. We employed questionnaires addressing self-reported somatic symptom burden (Somatic Symptom Scale 8) and neuropsychiatric symptoms including mood (Patient Health Questionnaire 2), anxiety (Generalized Anxiety Disorder 7), attention (Mindful Attention Awareness Scale) and fatigue (Fatigue Assessment Scale) in a cohort of hospital workers. Scores were compared between 175 individuals less than 4 weeks after positive testing for severe acute respiratory syndrome coronavirus 2, 88 individuals more than 4 weeks after positive testing and 87 severe acute respiratory syndrome coronavirus 2 uninfected controls. The majority (n = 313; 89.5%) of included individuals were vaccinated at least three times. After recovery from infection, no significant differences in scores assessing neuropsychiatric and somatic symptoms were detected between the three groups (severe acute respiratory syndrome coronavirus 2 uninfected controls, individuals less and more than 4 weeks after positive testing) independent of age, sex, preconditions and vaccination status. In addition, self-reported symptom burden did not significantly correlate with the number of vaccinations against severe acute respiratory syndrome coronavirus 2, time from recovery or the number of infections. Notably, in all three groups, the mean scores for each item of our questionnaire lay below the pathological threshold. Our data show that persistent neuropsychiatric and somatic symptoms after recovery from severe acute respiratory syndrome coronavirus 2 infection in fully vaccinated hospital workers do not occur more frequently than that in uninfected individuals. This will guide healthcare professionals in the clinical management of patients after recovery from breakthrough infections with severe acute respiratory syndrome coronavirus 2.

15.
Sci Adv ; 9(38): eadh1653, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37729408

RESUMEN

Migratory dendritic cells (migDCs) continuously patrol tissues and are activated by injury and inflammation. Extracellular adenosine triphosphate (ATP) is released by damaged cells or actively secreted during inflammation and increases migDC motility. However, the underlying molecular mechanisms by which ATP accelerates migDC migration is not understood. Here, we show that migDCs can be distinguished from other DC subsets and immune cells by their expression of the voltage-gated calcium channel subunit ß3 (Cavß3; CACNB3), which exclusively facilitates ATP-dependent migration in vitro and during tissue damage in vivo. By contrast, CACNB3 does not regulate lipopolysaccharide-dependent migration. Mechanistically, CACNB3 regulates ATP-dependent inositol 1,4,5-trisphophate receptor-controlled calcium release from the endoplasmic reticulum. This, in turn, is required for ATP-mediated suppression of adhesion molecules, their detachment, and initiation of migDC migration. Thus, Cacnb3-deficient migDCs have an impaired migration after ATP exposure. In summary, we identified CACNB3 as a master regulator of ATP-dependent migDC migration that controls tissue-specific immunological responses during injury and inflammation.


Asunto(s)
Adenosina Trifosfato , Canales de Calcio , Humanos , Transporte Biológico , Inflamación , Células Dendríticas
16.
J Clin Invest ; 133(7)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36719741

RESUMEN

Multiple sclerosis (MS) is a progressive inflammatory demyelinating disease of the CNS. Increasing evidence suggests that vulnerable neurons in MS exhibit fatal metabolic exhaustion over time, a phenomenon hypothesized to be caused by chronic hyperexcitability. Axonal Kv7 (outward-rectifying) and oligodendroglial Kir4.1 (inward-rectifying) potassium channels have important roles in regulating neuronal excitability at and around the nodes of Ranvier. Here, we studied the spatial and functional relationship between neuronal Kv7 and oligodendroglial Kir4.1 channels and assessed the transcriptional and functional signatures of cortical and retinal projection neurons under physiological and inflammatory demyelinating conditions. We found that both channels became dysregulated in MS and experimental autoimmune encephalomyelitis (EAE), with Kir4.1 channels being chronically downregulated and Kv7 channel subunits being transiently upregulated during inflammatory demyelination. Further, we observed that pharmacological Kv7 channel opening with retigabine reduced neuronal hyperexcitability in human and EAE neurons, improved clinical EAE signs, and rescued neuronal pathology in oligodendrocyte-Kir4.1-deficient (OL-Kir4.1-deficient) mice. In summary, our findings indicate that neuron-OL compensatory interactions promoted resilience through Kv7 and Kir4.1 channels and identify pharmacological activation of nodal Kv7 channels as a neuroprotective strategy against inflammatory demyelination.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Humanos , Nódulos de Ranvier/metabolismo , Potasio/metabolismo , Neuronas/metabolismo , Oligodendroglía/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo
17.
Mil Med ; 177(3): 270-7, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22479913

RESUMEN

OBJECTIVE: To describe the perceptions of training and deployment preparation and combat experiences and exposures of U.S. Army combat medics. METHODS: Data were from the first year of a 3-year longitudinal study designed to assess the impact of combat on the behavioral health and resilience of 347 combat medics surveyed 3 to 6 months after returning from a 12-month deployment to Operation Enduring Freedom/Operation Iraqi Freedom theatre and assigned to brigade combat teams. RESULTS: Analyses indicated that combat medics may benefit from better preparation in types of shifts required during deployment, type and intensity of combat likely to be seen and experienced, more adequate training in the area of stress and mental health care management, and easier access to behavioral mental health care. CONCLUSIONS: The military has shown considerable progress in addressing and understanding the mental health care needs of Soldiers. However, challenges remain. Additional emphasis should be placed on reducing the stigma and barriers related to mental health care both in theatre and garrison and on developing an evidence-based, validated program for medics and other Soldiers to recognize stress and mental health issues on the battlefield. For medics, this should be from two perspectives-that of a combat Soldier and that of a medical provider.


Asunto(s)
Auxiliares de Urgencia , Guerra de Irak 2003-2011 , Personal Militar , Consejo , Auxiliares de Urgencia/educación , Auxiliares de Urgencia/psicología , Humanos , Servicios de Salud Mental , Personal Militar/psicología , Estrés Psicológico , Estados Unidos
18.
Nat Neurosci ; 25(7): 944-955, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35726057

RESUMEN

Progressive multiple sclerosis (MS) is characterized by unrelenting neurodegeneration, which causes cumulative disability and is refractory to current treatments. Drug development to prevent disease progression is an urgent clinical need yet is constrained by an incomplete understanding of its complex pathogenesis. Using spatial transcriptomics and proteomics on fresh-frozen human MS brain tissue, we identified multicellular mechanisms of progressive MS pathogenesis and traced their origin in relation to spatially distributed stages of neurodegeneration. By resolving ligand-receptor interactions in local microenvironments, we discovered defunct trophic and anti-inflammatory intercellular communications within areas of early neuronal decline. Proteins associated with neuronal damage in patient samples showed mechanistic concordance with published in vivo knockdown and central nervous system (CNS) disease models, supporting their causal role and value as potential therapeutic targets in progressive MS. Our findings provide a new framework for drug development strategies, rooted in an understanding of the complex cellular and signaling dynamics in human diseased tissue that facilitate this debilitating disease.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Esclerosis Múltiple , Enfermedades del Sistema Nervioso Central/complicaciones , Progresión de la Enfermedad , Humanos , Esclerosis Múltiple/patología , Neuronas/metabolismo , Proteómica
19.
Biol Lett ; 7(5): 689-91, 2011 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-21525048

RESUMEN

Differences between sexes in cognitive processes are widespread in humans and permeate many, if not most, cognitive domains. In animal cognition research, however, possible sex differences are still often neglected. Here, we provide striking evidence for a sex-specific response in an object permanence task in domestic dogs (Canis familiaris). Female dogs responded with significantly increased looking times to a violation of expectancy--a ball 'magically' changing size while temporarily occluded. By contrast, male dogs, irrespective of their neuter status, did not respond to the size constancy violation. These results indicate that sex differences in basic cognitive processes may extend to mammals in general, and call for increased consideration of possible sex effects when analysing and interpreting data in animal cognition.


Asunto(s)
Conducta Animal , Cognición , Perros/fisiología , Factores Sexuales , Percepción Visual , Animales , Femenino , Masculino
20.
Diabetes Res Clin Pract ; 173: 108691, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33549675

RESUMEN

AIMS: Systemic inhibition of dipeptidyl peptidase 4 (DPP4) showed a protective effect in several transplant models. Here we assessed the specific role of extrarenal DPP4 in renal transplant rejection. METHODS: Kidneys from wildtype (wt) F344 rats were either transplanted in wt Dark Agouti or congenic rats not expressing DPP4. The remaining, not transplanted donor kidney served as healthy controls. To investigate early inflammatory events rats were sacrificed 3 days after transplantation and kidneys were evaluated for inflammatory cells, capillary rarefaction, proliferation, apoptosis and myofibroblasts by immunohistochemistry. RESULTS: Capillary ERG-1-positive endothelial cells were significantly more abundant in renal cortex when transplanted into DPP4 deficient compared to wt recipients. In contrast, TGF-ß and myofibroblasts were reduced by more than 25% in kidneys transplanted into DPP4 deficient compared to wt recipients. Numbers of CD161a-positive NK-cells were significantly lower in allografts in DPP4 deficient compared to wt recipients. Numbers of all other investigated immune cells were not affected by the lack of extrarenal DPP4. CONCLUSION: In early transplant rejection extrarenal DPP4 is involved in the recruitment of NK-cells and early fibrosis. Beneficial effects were less pronounced than reported for systemic DPP4 inhibition, indicating that renal DPP4 is an important player in transplantation-mediated injury.


Asunto(s)
Actinas/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Trasplante de Riñón/métodos , Células Asesinas Naturales/metabolismo , Músculo Liso/metabolismo , Miofibroblastos/metabolismo , Subfamilia B de Receptores Similares a Lectina de Células NK/metabolismo , Enfermedad Aguda , Animales , Modelos Animales de Enfermedad , Masculino , Ratas , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA