Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 574(7780): 663-666, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31666720

RESUMEN

Over the past eight hundred thousand years, glacial-interglacial cycles oscillated with a period of one hundred thousand years ('100k world'1). Ice core and ocean sediment data have shown that atmospheric carbon dioxide, Antarctic temperature, deep ocean temperature, and global ice volume correlated strongly with each other in the 100k world2-6. Between about 2.8 and 1.2 million years ago, glacial cycles were smaller in magnitude and shorter in duration ('40k world'7). Proxy data from deep-sea sediments suggest that the variability of atmospheric carbon dioxide in the 40k world was also lower than in the 100k world8-10, but we do not have direct observations of atmospheric greenhouse gases from this period. Here we report the recovery of stratigraphically discontinuous ice more than two million years old from the Allan Hills Blue Ice Area, East Antarctica. Concentrations of carbon dioxide and methane in ice core samples older than two million years have been altered by respiration, but some younger samples are pristine. The recovered ice cores extend direct observations of atmospheric carbon dioxide, methane, and Antarctic temperature (based on the deuterium/hydrogen isotope ratio δDice, a proxy for regional temperature) into the 40k world. All climate properties before eight hundred thousand years ago fall within the envelope of observations from continuous deep Antarctic ice cores that characterize the 100k world. However, the lowest measured carbon dioxide and methane concentrations and Antarctic temperature in the 40k world are well above glacial values from the past eight hundred thousand years. Our results confirm that the amplitudes of glacial-interglacial variations in atmospheric greenhouse gases and Antarctic climate were reduced in the 40k world, and that the transition from the 40k to the 100k world was accompanied by a decline in minimum carbon dioxide concentrations during glacial maxima.

2.
An Acad Bras Cienc ; 94(suppl 1): e20210351, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35508014

RESUMEN

Trace elements are emitted to the atmosphere from natural and anthropogenic sources. The increase in industrialization and mining occurring from the late 19th century released large quantities of toxic trace elements into the Earth's atmosphere. Here we investigate the variability of concentrations of bismuth, cadmium, chromium, and lead in two Mount Johns - MJ (79°55'28"S, 94°23'18"W, 2100 m a.s.l) ice cores over 132 years (1883-2015). Trace element concentrations were determined using inductively coupled plasma mass spectrometry (CCI/UMaine). The data show evidence of pollution for these elements in Antarctica as early as the 1883. Several maxima concentrations were observed: first at the beginning of the 20th century and the last from 1970s to 1990s, with a clear decrease during recent years. Emissions occur from different anthropogenic sources and appear to be variable throughout the record. The main source of these elements is attributed to mining and smelting of non-ferrous metals in South America, Africa, and Australia. As well as a probable lead enrichment due to the use of fossil fuels. The MJ ice core record also reflects changes in atmospheric circulation and transport processes, probably associated with a strengthening of the westerlies.


Asunto(s)
Contaminantes Atmosféricos , Oligoelementos , Contaminantes Atmosféricos/análisis , Regiones Antárticas , Cadmio/análisis , Monitoreo del Ambiente , Contaminación Ambiental/análisis , Plomo/análisis , Oligoelementos/análisis
3.
Proc Natl Acad Sci U S A ; 112(22): 6887-91, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-25964367

RESUMEN

Here, we present direct measurements of atmospheric composition and Antarctic climate from the mid-Pleistocene (∼1 Ma) from ice cores drilled in the Allan Hills blue ice area, Antarctica. The 1-Ma ice is dated from the deficit in (40)Ar relative to the modern atmosphere and is present as a stratigraphically disturbed 12-m section at the base of a 126-m ice core. The 1-Ma ice appears to represent most of the amplitude of contemporaneous climate cycles and CO2 and CH4 concentrations in the ice range from 221 to 277 ppm and 411 to 569 parts per billion (ppb), respectively. These concentrations, together with measured δD of the ice, are at the warm end of the field for glacial-interglacial cycles of the last 800 ky and span only about one-half of the range. The highest CO2 values in the 1-Ma ice fall within the range of interglacial values of the last 400 ka but are up to 7 ppm higher than any interglacial values between 450 and 800 ka. The lowest CO2 values are 30 ppm higher than during any glacial period between 450 and 800 ka. This study shows that the coupling of Antarctic temperature and atmospheric CO2 extended into the mid-Pleistocene and demonstrates the feasibility of discontinuously extending the current ice core record beyond 800 ka by shallow coring in Antarctic blue ice areas.

4.
Environ Sci Technol ; 51(22): 13282-13287, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29090924

RESUMEN

To answer pressing new research questions about the rate and timing of abrupt climate transitions, a robust system for ultrahigh-resolution sampling of glacier ice is needed. Here, we present a multielement method of LA-ICP-MS analysis wherein an array of chemical elements is simultaneously measured from the same ablation area. Although multielement techniques are commonplace for high-concentration materials, prior to the development of this method, all LA-ICP-MS analyses of glacier ice involved a single element per ablation pass or spot. This new method, developed using the LA-ICP-MS system at the W. M. Keck Laser Ice Facility at the University of Maine Climate Change Institute, has already been used to shed light on our flawed understanding of natural levels of Pb in Earth's atmosphere.


Asunto(s)
Cubierta de Hielo , Espectrofotometría Atómica , Rayos Láser
5.
Nat Commun ; 14(1): 5432, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37669925

RESUMEN

High-resolution ice core records from coastal Antarctica are particularly useful to inform our understanding of environmental changes and their drivers. Here, we present a decadally resolved record of sea-salt sodium (a proxy for open-ocean area) and non-sea salt calcium (a proxy for continental dust) from the well-dated Roosevelt Island Climate Evolution (RICE) core, focusing on the time period between 40-26 ka BP. The RICE dust record exhibits an abrupt shift towards a higher mean dust concentration at 32 ka BP. Investigating existing ice-core records, we find this shift is a prominent feature across Antarctica. We propose that this shift is linked to an equatorward displacement of Southern Hemisphere westerly winds. Subsequent to the wind shift, data suggest a weakening of Southern Ocean upwelling and a decline of atmospheric CO2 to lower glacial values, hence making this shift an important glacial climate event with potentially important insights for future projections.

6.
Natl Sci Rev ; 8(7): nwaa144, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34691679

RESUMEN

Mineral dust can indirectly affect the climate by supplying bioavailable iron (Fe) to the ocean. Here, we present the records of dissolved Fe (DFe) and total Fe (TDFe) in North Greenland Eemian Ice Drilling (NEEM) ice core over the past 110 kyr BP. The Fe records are significantly negatively correlated with the carbon-dioxide (CO2) concentrations during cold periods. The results suggest that the changes in Fe fluxes over the past 110 kyr BP in the NEEM ice core are consistent with those in Chinese loess records because the mineral-dust distribution is controlled by the East Asian deserts. Furthermore, the variations in the dust input on a global scale are most likely driven by changes in solar radiation during the last glacial-interglacial cycle in response to Earth's orbital cycles. In the last glacial-interglacial cycle, the DFe/TDFe ratios were higher during the warm periods (following the post-Industrial Revolution and during the Holocene and last interglacial period) than during the main cold period (i.e. the last glacial maximum (LGM)), indicating that the aeolian input of iron and the iron fertilization effect on the oceans have a non-linear relationship during different periods. Although the burning of biomass aerosols has released large amounts of DFe since the Industrial Revolution, no significant responses are observed in the DFe and TDFe variations during this period, indicating that severe anthropogenic contamination has no significant effect on the DFe (TDFe) release in the NEEM ice core.

7.
iScience ; 24(5): 102418, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34113806

RESUMEN

The Everest region is characterized by its alpine glacial environment. In an effort to understand environmental change and tectonic activity, our team cored Taboche Lake, situated at 4,712 m along the western margin of the Ngozumpa Glacier. This research catalogs past earthquakes using geological records of the lake core that are important for the assessment of future earthquake hazards in the region and provides information for tectonic risk of glacial lake floods. Core grain size characteristics and internal sedimentary structures from computed tomographic scan were coupled with radiocarbon dating of organic matter preserved in the core to reconstruct the environmental history of the area. The 58-cm-long core consists of laminated silty sands and sandy silts with particle diameters <2 mm. The core records a syn-sedimentary deformational structure, folded sediments, rhythmically alternating dark- and light-colored laminations, and turbidites, which indicate coeval climatic and tectonic variations over the past ∼1,600 years.

8.
Sci Total Environ ; 789: 148006, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34082206

RESUMEN

This case study provides a framework for future monitoring and evidence for human source pollution in the Khumbu region, Nepal. We analyzed the chemical composition (major ions, major/trace elements, black carbon, and stable water isotopes) of pre-monsoon stream water (4300-5250 m) and snow (5200-6665 m) samples collected from Mt. Everest, Mt. Lobuche, and the Imja Valley during the 2019 pre-monsoon season, in addition to a shallow ice core recovered from the Khumbu Glacier (5300 m). In agreement with previous work, pre-monsoon aerosol deposition is dominated by dust originating from western sources and less frequently by transport from southerly air mass sources as demonstrated by evidence of one of the strongest recorded pre-monsoon events emanating from the Bay of Bengal, Cyclone Fani. Elevated concentrations of human-sourced metals (e.g., Pb, Bi, As) are found in surface snow and stream chemistry collected in the Khumbu region. As the most comprehensive case study of environmental chemistry in the Khumbu region, this research offers sufficient evidence for increased monitoring in this watershed and surrounding areas.


Asunto(s)
Contaminantes Atmosféricos , Tormentas Ciclónicas , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Humanos , Nepal , Ríos , Estaciones del Año , Nieve
9.
Chemosphere ; 251: 126399, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32163783

RESUMEN

In this study, a shallow ice core (12.5 m, called LGB) was drilled at the Lambert Glacial Basin, East Antarctica. The major ion and metal elements were measured at 5-6 cm resolution in this shallow core, which covered the period 1990-2017. Therefore, an annual-resolution record of iron (Fe) concentrations and fluxes were reconstructed in this shallow ice core. Although the Fe data is comparable to previous results, our results emphasized that much more dissolved Fe (DFe) from the Cerro Hudson volcanic event (August 1991) was transported to the East Antarctic ice sheet, in comparison with the Pinatubo volcanic event (June 1991). The aeolian dust may be the primary DFe source during 1990-2017. In particular, the DFe variations may be affected by the biomass burning emissions in two periods (1990-1998 and 2014-2017). While total dissolved Fe (TDFe) variations were controlled by the climatic conditions since 2000 because of the temperature (δ18O) decreasing at East Antarctica. These Fe data will be useful to assess the modern bioavailable Fe release for the Antarctica ice sheet.


Asunto(s)
Monitoreo del Ambiente , Cubierta de Hielo/química , Hierro/análisis , Regiones Antárticas , Biomasa , Polvo/análisis , Hierro/química , Metales , Temperatura
10.
Geohealth ; 4(9): e2020GH000277, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33005839

RESUMEN

The H1N1 "Spanish influenza" pandemic of 1918-1919 caused the highest known number of deaths recorded for a single pandemic in human history. Several theories have been offered to explain the virulence and spread of the disease, but the environmental context remains underexamined. In this study, we present a new environmental record from a European, Alpine ice core, showing a significant climate anomaly that affected the continent from 1914 to 1919. Incessant torrential rain and declining temperatures increased casualties in the battlefields of World War I (WWI), setting the stage for the spread of the pandemic at the end of the conflict. Multiple independent records of temperature, precipitation, and mortality corroborate these findings.

11.
iScience ; 23(12): 101718, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33376965

RESUMEN

Global audiences are captivated by climbers pushing themselves to the limits in the hypoxic environment of Mount Everest. However, air pressure sets oxygen abundance, meaning it varies with the weather and climate warming. This presents safety issues for mountaineers but also an opportunity for public engagement around climate change. Here we blend new observations from Everest with ERA5 reanalysis (1979-2019) and climate model results to address both perspectives. We find that plausible warming could generate subtle but physiologically relevant changes in summit oxygen availability, including an almost 5% increase in annual minimum VO2 max for 2°C warming since pre-industrial. In the current climate we find evidence of swings in pressure sufficient to change Everest's apparent elevation by almost 750 m. Winter pressures can also plunge lower than previously reported, highlighting the importance of air pressure forecasts for the safety of those trying to push the physiological frontier on Mt. Everest.

12.
Sci Total Environ ; 675: 380-389, 2019 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-31030144

RESUMEN

Iron concentrations in the Southern Ocean are thought to act as a driver of the regular glacial-interglacial cycles in atmospheric carbon dioxide (CO2). This study presents the concentrations of bioavailable Fe (dissolved Fe (DFe) and total dissolved Fe (TDFe)), major ions (Na+, K+, Mg2+, Ca2+, Cl-,NO3-,SO42- and methanesulfonic acid (MSA)), heavy metal elements (Sr, Pb, V, Ti and Cd), and rare earth elements (REEs; specifically, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) and the oxygen and hydrogen isotopic compositions (δ18O and δD) from a series of surface snow samples collected during from January 22 to February 5, 2017 along a traverse from Zhongshan Station to Dome A in East Antarctica. The results reflect the Antarctic surface snow Fe and the other trace element concentrations on the East Antarctica ice sheet. In particular, the DFe and TDFe concentrations were measured using inductively coupled plasma sector field mass spectrometry (SF-ICP-MS). The concentration patterns of DFe and TDFe show three different stages along this transect. First, there is an abrupt decrease with distance inland from the coast and then a slight decreasing trend with increasing elevation. The maximum concentrations were observed at distances of 450-600 km from the coast, indicating that there are different potential sources and/or transporting air masses. The variations show that the sources and processes that deliver bioavailable Fe differ along this transect. These data are useful for assessing bioavailable Fe release from the Antarctic ice sheet.

13.
Geohealth ; 2(5): 162-170, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-32159523

RESUMEN

Understanding the context from which evidence emerges is of paramount importance in reaching robust conclusions in scientific inquiries. This is as true of the present as it is of the past. In a trans-disciplinary study such as More et al. (2017, https://doi.org/10.1002/2017GH000064) and many others appearing in this and similar journals, a proper analysis of context demands the use of historical evidence. This includes demographic, epidemiological, and socio-economic data-common in many studies of the impact of anthropogenic pollution on human health-and, as in this specific case, also geoarchaeological evidence. These records anchor climate and pollution data in the geographic and human circumstances of history, without which we lose a fundamental understanding of the data itself. This article addresses Hinkley (2018, https://doi.org/10.1002/2017GH000105) by highlighting the importance of context, focusing on the historical and archaeological evidence, and then discussing atmospheric deposition and circulation in the specific region of our study. Since many of the assertions in Bindler (2018, https://doi.org/10.1002/2018GH000135) are congruent with our findings and directly contradict Hinkley (2018), this reply refers to Bindler (2018), whenever appropriate, and indicates where our evidence diverges.

14.
Geohealth ; 1(4): 211-219, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32158988

RESUMEN

Contrary to widespread assumptions, next-generation high (annual to multiannual) and ultra-high (subannual) resolution analyses of an Alpine glacier reveal that true historical minimum natural levels of lead in the atmosphere occurred only once in the last ~2000 years. During the Black Death pandemic, demographic and economic collapse interrupted metal production and atmospheric lead dropped to undetectable levels. This finding challenges current government and industry understanding of preindustrial lead pollution and its potential implications for human health of children and adults worldwide. Available technology and geographic location have limited previous ice core investigations. We provide new high- (discrete, inductively coupled plasma mass spectrometry, ICP-MS) and ultra-high resolution (laser ablation inductively coupled plasma mass spectrometry, LA-ICP-MS) records of atmospheric lead deposition extracted from the high Alpine glacier Colle Gnifetti, in the Swiss-Italian Alps. We show that contrary to the conventional wisdom, low levels at or approaching natural background occurred only in a single 4 year period in ~2000 years documented in the new ice core, during the Black Death (~1349-1353 C.E.), the most devastating pandemic in Eurasian history. Ultra-high chronological resolution allows for the first time detailed and decisive comparison of the new glaciochemical data with historical records. Historical evidence shows that mining activity ceased upwind of the core site from ~1349 to 1353, while concurrently on the glacier lead (Pb) concentrations-dated by layer counting confirmed by radiocarbon dating-dropped to levels below detection, an order of magnitude beneath figures deemed low in earlier studies. Previous assumptions about preindustrial "natural" background lead levels in the atmosphere-and potential impacts on humans-have been misleading, with significant implications for current environmental, industrial, and public health policy, as well as for the history of human lead exposure. Trans-disciplinary application of this new technology opens the door to new approaches to the study of the anthropogenic impact on past and present human health.

15.
Environ Sci Technol ; 40(10): 3355-61, 2006 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-16749705

RESUMEN

We present a novel ice/firn core melter system that uses fraction collectors to collect discrete, high-resolution (<1 cm/sample possible), continuous, coregistered meltwater samples for analysis of eight major ions by ion chromatography (IC), >32 trace elements by inductively coupled plasma sectorfield mass spectrometry (ICP-SMS), and stable oxygen and hydrogen isotopes by isotope ratio mass spectrometry (IRMS). The new continuous melting with discrete sampling (CMDS) system preserves an archive of each sample, reduces the problem of incomplete particle dissolution in ICP-SMS samples, and provides more precise trace element data than previous ice melter models by using longer ICP-SMS scan times and washing the instrument between samples. CMDS detection limits are similar to or lower than those published for ice melter systems coupled directly to analytical instruments and are suitable for analyses of polar and mid-low-latitude ice cores. Analysis of total calcium and sulfur by ICP-SMS and calcium ion, sulfate, and methanesulfonate by IC from the Mt. Logan Prospector-Russell Col ice core confirms data accuracy and coregistration of the split fractions from each sample. The reproducibility of all data acquired by the CMDS system is confirmed by replicate analyses of parallel sections of the GISP2 D ice core.


Asunto(s)
Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Hielo/análisis , Iones/análisis , Oligoelementos/análisis , Cromatografía por Intercambio Iónico/métodos , Isótopos/análisis , Espectrometría de Masas/métodos , Sensibilidad y Especificidad
16.
Science ; 313(5788): 827-31, 2006 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-16902135

RESUMEN

Antarctic snowfall exhibits substantial variability over a range of time scales, with consequent impacts on global sea level and the mass balance of the ice sheets. To assess how snowfall has affected the thickness of the ice sheets in Antarctica and to provide an extended perspective, we derived a 50-year time series of snowfall accumulation over the continent by combining model simulations and observations primarily from ice cores. There has been no statistically significant change in snowfall since the 1950s, indicating that Antarctic precipitation is not mitigating global sea level rise as expected, despite recent winter warming of the overlying atmosphere.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA