Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 185: 55-68, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35661586

RESUMEN

Mitochondria are the major organelles of energy production; however, active mitochondria can decline their energetic role and show a dysfunctional status. Mitochondrial dysfunction was induced by high non-physiological level of L-galactone-1,4-lactone (L-GalL), the precursor of ascorbate (AsA), in plant mitochondria. The dysfunction induced by L-GalL was associated with the fault in the mitochondrial electron partition and reactive oxygen species (ROS) over-production. Using mitochondria from RNAi-plant lines harbouring silenced L-galactone-1,4-lactone dehydrogenase (L-GalLDH) activity, it was demonstrated that such dysfunction is dependent on this enzyme activity. The capacity of alternative respiration was strongly decreased by L-GalL, probably mediated by redox-inactivation of the alternative oxidase (AOX) enzyme. Although, alternative respiration was shown to be the key factor that helps support AsA synthesis in dysfunctional mitochondria. Experiments with respiratory inhibitors showed that ROS formation and mitochondrial dysfunction were more associated with the decline in the activities of COX (cytochrome oxidase) and particularly AOX than with the lower activities of respiratory complexes I and III. The application of high L-GalL concentrations induced proteomic changes that indicated alterations in proteins related to oxidative stress and energetic status. However, supra-optimal L-GalL concentration was not deleterious for plants. Instead, the L-GalLDH activity could be positive. Indeed, it was found that wild type plants performed better growth than L-GalLDH-RNAi plants in response to high non-physiological L-GalL concentrations.


Asunto(s)
Proteínas Mitocondriales , Proteómica , Respiración de la Célula , Lactonas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
Plant Physiol Biochem ; 74: 315-22, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24342083

RESUMEN

Plant steroid hormones brassinosteroids (BRs) and the gaseous hormone ethylene (ET) alter the ascorbic acid-glutathione (AA-GSH) levels in tomato (Solanum lycopersicum L.) plants. The interaction of these hormones in regulating antioxidant metabolism is however unknown. The combined use of genetics (BR-mutants) and chemical application (BR/ET-related chemicals) shows that BRs and ET signalling pathways interact, to regulate leaf AA content and synthesis. BR-deficient (d(x)) leaves display low total AA but BR-accumulating (35S:D) leaves show normal total AA content. Leaves with either BR levels lower or higher than wild type plants showed a higher oxidised AA redox state. The activity of L-galactono-1,4-lactone dehydrogenase (L-GalLDH), the mitochondrial enzyme that catalyses the last step in AA synthesis is lower in d(x) and higher in 35S:D plants. BR-deficient mutants show higher ET production but it is restored to normal levels when BR content is increased in 35S:D plants. Suppression of ET signalling using 1-methylcyclopropene in d(x) and 35S:D plants restored leaf AA content and L-GalLDH activity, to the values observed in wild type. The suppression of ET action in d(x) and 35S:D leaves leads to the respective decreasing and increasing respiration, indicating an opposite response compared to AA synthesis. This inverse relationship is lacking in ET suppressed d(x) plants in response to external BRs. The modifications in the in vivo activity of L-GalLDH activity do not correlate with changes in the level of the enzyme. Taken together, these data suggest that ET suppresses and BRs promote AA synthesis and accumulation.


Asunto(s)
Ácido Ascórbico/metabolismo , Brasinoesteroides/metabolismo , Etilenos/metabolismo , Hojas de la Planta/metabolismo , Solanum lycopersicum/metabolismo , Glutatión/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA