RESUMEN
Static quantitative magnetic resonance imaging (MRI) provides readouts of structural changes in diseased muscle, but current approaches lack the ability to fully explain the loss of contractile function. Muscle contractile function can be assessed using various techniques including phase-contrast MRI (PC-MRI), where strain rates are quantified. However, current two-dimensional implementations are limited in capturing the complex motion of contracting muscle in the context of its three-dimensional (3D) fiber architecture. The MR acquisitions (chemical shift-encoded water-fat separation scan, spin echo-echoplanar imaging with diffusion weighting, and two time-resolved 3D PC-MRI) wereperformed at 3 T. PC-MRI acquisitions and performed with and without load at 7.5% of the maximum voluntary dorsiflexion contraction force. Acquisitions (3 T, chemical shift-encoded water-fat separation scan, spin echo-echo planar imaging with diffusion weighting, and two time-resolved 3D PC-MRI) were performed with and without load at 7.5% of the maximum voluntary dorsiflexion contraction force. Strain rates and diffusion tensors were calculated and combined to obtain strain rates along and perpendicular to the muscle fibers in seven lower leg muscles during the dynamic dorsi-/plantarflexion movement cycle. To evaluate strain rates along the proximodistal muscle axis, muscles were divided into five equal segments. t-tests were used to test if cyclic strain rate patterns (amplitude > 0) were present along and perpendicular to the muscle fibers. The effects of proximal-distal location and load were evaluated using repeated measures ANOVAs. Cyclic temporal strain rate patterns along and perpendicular to the fiber were found in all muscles involved in dorsi-/plantarflexion movement (p < 0.0017). Strain rates along and perpendicular to the fiber were heterogeneously distributed over the length of most muscles (p < 0.003). Additional loading reduced strain rates of the extensor digitorum longus and gastrocnemius lateralis muscle (p < 0.001). In conclusion, the lower leg muscles involved in cyclic dorsi-/plantarflexion exercise showed cyclic fiber strain rate patterns with amplitudes that varied between muscles and between the proximodistal segments within the majority of muscles.
Asunto(s)
Tobillo , Pierna , Humanos , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología , Imagen por Resonancia Magnética/métodos , Fibras Musculares Esqueléticas , AguaRESUMEN
Diffusion-weighted imaging (DWI) is an established MRI technique that can investigate tissue microstructure at the scale of a few micrometers. Musculoskeletal tissues typically have a highly ordered structure to fulfill their functions and therefore represent an optimal application of DWI. Even more since disruption of tissue organization affects its biomechanical properties and may indicate irreversible damage. The application of DWI to the musculoskeletal system faces application-specific challenges on data acquisition including susceptibility effects, the low T2 relaxation time of most musculoskeletal tissues (2-70 msec) and the need for sub-millimetric resolution. Thus, musculoskeletal applications have been an area of development of new DWI methods. In this review, we provide an overview of the technical aspects of DWI acquisition including diffusion-weighting, MRI pulse sequences and different diffusion regimes to study tissue microstructure. For each tissue type (growth plate, articular cartilage, muscle, bone marrow, intervertebral discs, ligaments, tendons, menisci, and synovium), the rationale for the use of DWI and clinical studies in support of its use as a biomarker are presented. The review describes studies showing that DTI of the growth plate has predictive value for child growth and that DTI of articular cartilage has potential to predict the radiographic progression of joint damage in early stages of osteoarthritis. DTI has been used extensively in skeletal muscle where it has shown potential to detect microstructural and functional changes in a wide range of muscle pathologies. DWI of bone marrow showed to be a valuable tool for the diagnosis of benign and malignant acute vertebral fractures and bone metastases. DTI and diffusion kurtosis have been investigated as markers of early intervertebral disc degeneration and lower back pain. Finally, promising new applications of DTI to anterior cruciate ligament grafts and synovium are presented. The review ends with an overview of the use of DWI in clinical routine. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 3.
Asunto(s)
Enfermedades de la Médula Ósea , Sistema Musculoesquelético , Fracturas de la Columna Vertebral , Niño , Humanos , Imagen de Difusión por Resonancia Magnética/métodos , Sistema Musculoesquelético/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Fracturas de la Columna Vertebral/patologíaRESUMEN
Due to its exceptional sensitivity to soft tissues, MRI has been extensively utilized to assess anatomical muscle parameters such as muscle volume and cross-sectional area. Quantitative Magnetic Resonance Imaging (qMRI) adds to the capabilities of MRI, by providing information on muscle composition such as fat content, water content, microstructure, hypertrophy, atrophy, as well as muscle architecture. In addition to compositional changes, qMRI can also be used to assess function for example by measuring muscle quality or through characterization of muscle deformation during passive lengthening/shortening and active contractions. The overall aim of this review is to provide an updated overview of qMRI techniques that can quantitatively evaluate muscle structure and composition, provide insights into the underlying biological basis of the qMRI signal, and illustrate how qMRI biomarkers of muscle health relate to function in healthy and diseased/injured muscles. While some applications still require systematic clinical validation, qMRI is now established as a comprehensive technique, that can be used to characterize a wide variety of structural and compositional changes in healthy and diseased skeletal muscle. Taken together, multiparametric muscle MRI holds great potential in the diagnosis and monitoring of muscle conditions in research and clinical applications. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.
RESUMEN
BACKGROUND: Diffusion-weighted imaging (DWI) may allow for breast cancer screening MRI without a contrast injection. Multishot methods improve prone DWI of the breasts but face different challenges in the supine position. PURPOSE: To establish a multishot DWI (msDWI) protocol for supine breast MRI and to evaluate the performance of supine vs. prone msDWI. STUDY TYPE: Prospective. POPULATION: Protocol optimization: 10 healthy women (ages 22-56), supine vs. prone: 24 healthy women (ages 22-62) and five women (ages 29-61) with breast tumors. FIELD STRENGTH/SEQUENCE: 3-T, protocol optimization msDWI: free-breathing (FB) 2-shots, FB 4-shots, respiratory-triggered (RT) 2-shots, RT 4-shots, supine vs. prone: RT 4-shot msDWI, T2-weighted fast-spin echo. ASSESSMENT: Protocol optimization and supine vs. prone: three observers performed an image quality assessment of sharpness, aliasing, distortion (vs. T2), perceived SNR, and overall image quality (scale of 1-5). Apparent diffusion coefficients (ADCs) in fibroglandular tissue (FGT) and breast tumors were measured. STATISTICAL TESTS: Effect of study variables on dichotomized ratings (4/5 vs. 1/2/3) and FGT ADCs were assessed with mixed-effects logistic regression. Interobserver agreement utilized Gwet's agreement coefficient (AC). Lesion ADCs were assessed by Bland-Altman analysis and concordance correlation (ρc ). P value <0.05 was considered statistically significant. RESULTS: Protocol optimization: 4-shots significantly improved sharpness and distortion; RT significantly improved sharpness, aliasing, perceived SNR, and overall image quality. FGT ADCs were not significantly different between shots (P = 0.812), FB vs. RT (P = 0.591), or side (P = 0.574). Supine vs. prone: supine images were rated significantly higher for sharpness, aliasing, and overall image quality. FGT ADCs were significantly higher supine; lesion ADCs were highly correlated (ρc = 0.92). DATA CONCLUSION: Based on image quality, supine msDWI outperformed prone msDWI. Lesion ADCs were highly correlated between the two positions, while FGT ADCs were higher in the supine position. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 1.
Asunto(s)
Neoplasias de la Mama , Imagen de Difusión por Resonancia Magnética , Humanos , Femenino , Estudios Prospectivos , Posición Prona , Imagen de Difusión por Resonancia Magnética/métodos , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados , Neoplasias de la Mama/diagnóstico por imagen , Imagen Eco-Planar/métodosRESUMEN
BACKGROUND: Deep learning (DL)-based automatic segmentation models can expedite manual segmentation yet require resource-intensive fine-tuning before deployment on new datasets. The generalizability of DL methods to new datasets without fine-tuning is not well characterized. PURPOSE: Evaluate the generalizability of DL-based models by deploying pretrained models on independent datasets varying by MR scanner, acquisition parameters, and subject population. STUDY TYPE: Retrospective based on prospectively acquired data. POPULATION: Overall test dataset: 59 subjects (26 females); Study 1: 5 healthy subjects (zero females), Study 2: 8 healthy subjects (eight females), Study 3: 10 subjects with osteoarthritis (eight females), Study 4: 36 subjects with various knee pathology (10 females). FIELD STRENGTH/SEQUENCE: A 3-T, quantitative double-echo steady state (qDESS). ASSESSMENT: Four annotators manually segmented knee cartilage. Each reader segmented one of four qDESS datasets in the test dataset. Two DL models, one trained on qDESS data and another on Osteoarthritis Initiative (OAI)-DESS data, were assessed. Manual and automatic segmentations were compared by quantifying variations in segmentation accuracy, volume, and T2 relaxation times for superficial and deep cartilage. STATISTICAL TESTS: Dice similarity coefficient (DSC) for segmentation accuracy. Lin's concordance correlation coefficient (CCC), Wilcoxon rank-sum tests, root-mean-squared error-coefficient-of-variation to quantify manual vs. automatic T2 and volume variations. Bland-Altman plots for manual vs. automatic T2 agreement. A P value < 0.05 was considered statistically significant. RESULTS: DSCs for the qDESS-trained model, 0.79-0.93, were higher than those for the OAI-DESS-trained model, 0.59-0.79. T2 and volume CCCs for the qDESS-trained model, 0.75-0.98 and 0.47-0.95, were higher than respective CCCs for the OAI-DESS-trained model, 0.35-0.90 and 0.13-0.84. Bland-Altman 95% limits of agreement for superficial and deep cartilage T2 were lower for the qDESS-trained model, ±2.4 msec and ±4.0 msec, than the OAI-DESS-trained model, ±4.4 msec and ±5.2 msec. DATA CONCLUSION: The qDESS-trained model may generalize well to independent qDESS datasets regardless of MR scanner, acquisition parameters, and subject population. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.
Asunto(s)
Cartílago Articular , Aprendizaje Profundo , Osteoartritis de la Rodilla , Femenino , Humanos , Estudios Retrospectivos , Cartílago Articular/patología , Imagen por Resonancia Magnética/métodos , Algoritmos , Osteoartritis de la Rodilla/patologíaRESUMEN
The purpose of this article is to review steatosis and fibrosis of skeletal muscle, focusing on older adults. Although CT, MRI, and ultrasound are commonly used to image skeletal muscle and provide diagnoses for a variety of medical conditions, quantitative assessment of muscle steatosis and fibrosis is uncommon. This review provides radiologists with a broad perspective on muscle steatosis and fibrosis in older adults by considering their public health impact, biologic mechanisms, and evaluation using CT, MRI, and ultrasound. Promising directions in clinical research that employ artificial intelligence algorithms and the imaging assessment of biologic age are also reviewed. The presented imaging methods hold promise for improving the evaluation of common conditions affecting older adults including sarcopenia, frailty, and cachexia.
RESUMEN
Chronic knee pain is a common condition. Causes of knee pain include trauma, inflammation, and degeneration, but in many patients the pathophysiology remains unknown. Recent developments in advanced magnetic resonance imaging (MRI) techniques and molecular imaging facilitate more in-depth research focused on the pathophysiology of chronic musculoskeletal pain and more specifically inflammation. The forthcoming new insights can help develop better targeted treatment, and some imaging techniques may even serve as imaging biomarkers for predicting and assessing treatment response in the future. This review highlights the latest developments in perfusion MRI, diffusion MRI, and molecular imaging with positron emission tomography/MRI and their application in the painful knee. The primary focus is synovial inflammation, also known as synovitis. Bone perfusion and bone metabolism are also addressed.
Asunto(s)
Dolor Musculoesquelético , Sinovitis , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/patología , Imagen por Resonancia Magnética/métodos , Sinovitis/etiología , Sinovitis/patología , Inflamación/patología , Imagen Molecular/efectos adversosRESUMEN
PURPOSE: [Formula: see text] mapping is a powerful tool for studying osteoarthritis (OA) changes and bilateral imaging may be useful in investigating the role of between-knee asymmetry in OA onset and progression. The quantitative double-echo in steady-state (qDESS) can provide fast simultaneous bilateral knee [Formula: see text] and high-resolution morphometry for cartilage and meniscus. The qDESS uses an analytical signal model to compute [Formula: see text] relaxometry maps, which require knowledge of the flip angle (FA). In the presence of [Formula: see text] inhomogeneities, inconsistencies between the nominal and actual FA can affect the accuracy of [Formula: see text] measurements. We propose a pixel-wise [Formula: see text] correction method for qDESS [Formula: see text] mapping exploiting an auxiliary [Formula: see text] map to compute the actual FA used in the model. METHODS: The technique was validated in a phantom and in vivo with simultaneous bilateral knee imaging. [Formula: see text] measurements of femoral cartilage (FC) of both knees of six healthy participants were repeated longitudinally to investigate the association between [Formula: see text] variation and [Formula: see text]. RESULTS: The results showed that applying the [Formula: see text] correction mitigated [Formula: see text] variations that were driven by [Formula: see text] inhomogeneities. Specifically, [Formula: see text] left-right symmetry increased following the [Formula: see text] correction ([Formula: see text] = 0.74 > [Formula: see text] = 0.69). Without the [Formula: see text] correction, [Formula: see text] values showed a linear dependence with [Formula: see text]. The linear coefficient decreased using the [Formula: see text] correction (from 24.3 ± 1.6 ms to 4.1 ± 1.8) and the correlation was not statistically significant after the application of the Bonferroni correction (p value > 0.01). CONCLUSION: The study showed that [Formula: see text] correction could mitigate variations driven by the sensitivity of the qDESS [Formula: see text] mapping method to [Formula: see text], therefore, increasing the sensitivity to detect real biological changes. The proposed method may improve the robustness of bilateral qDESS [Formula: see text] mapping, allowing for an accurate and more efficient evaluation of OA pathways and pathophysiology through longitudinal and cross-sectional studies.
Asunto(s)
Articulación de la Rodilla , Imagen por Resonancia Magnética , Humanos , Estudios Transversales , Imagen por Resonancia Magnética/métodos , Articulación de la Rodilla/diagnóstico por imagen , Imagenología Tridimensional , Fantasmas de ImagenRESUMEN
The dynamic contrast-enhanced (DCE)-MRI parameter Ktrans can quantify the intensity of synovial inflammation (synovitis) in knees with osteoarthritis (OA), but requires the use of gadolinium-based contrast agent (GBCA). Diffusion tensor imaging (DTI) measures the diffusion of water molecules with parameters mean diffusivity (MD) and fractional anisotropy (FA), and has been proposed as a method to detect synovial inflammation without the use of GBCA. The purpose of this study is to (1) determine the ability of DTI to quantify the intensity of synovitis in OA by comparing MD and FA with our imaging gold standard Ktrans within the synovium and (2) compare DTI and DCE-MRI measures with the semi-quantitative grading of OA severity with the Kellgren-Lawrence (KL) and MRI Osteoarthritis Knee Score (MOAKS) systems, in order to assess the relationship between synovitis intensity and OA severity. Within the synovium, MD showed a significant positive correlation with Ktrans (r = 0.79, p < 0.001), while FA showed a significant negative correlation with Ktrans (r = -0.72, p = 0.0026). These results show that DTI is able to quantify the intensity of synovitis within the whole synovium without the use of exogenous contrast agent. Additionally, MD, FA, and Ktrans values did not vary significantly when knees were separated by KL grade (p = 0.15, p = 0.32, p = 0.41, respectively), while MD (r = 0.60, p = 0.018) and Ktrans (r = 0.62, p = 0.013) had a significant positive correlation and FA (r = -0.53, p = 0.043) had a negative correlation with MOAKS. These comparisons indicate that quantitative measures of the intensity of synovitis may provide information in addition to morphological assessment to evaluate OA severity. Using DTI to quantify the intensity of synovitis without GBCA may be helpful to facilitate a broader clinical assessment of the severity of OA.
Asunto(s)
Imagen de Difusión Tensora/métodos , Osteoartritis de la Rodilla/diagnóstico por imagen , Sinovitis/diagnóstico por imagen , Adulto , Anciano , Medios de Contraste , Estudios Transversales , Femenino , Gadolinio , Humanos , Aumento de la Imagen , Masculino , Persona de Mediana Edad , Relación Señal-RuidoRESUMEN
BACKGROUND: Injuries to the articular cartilage in the knee are common in jumping athletes, particularly high-level basketball players. Unfortunately, these are often diagnosed at a late stage of the disease process, after tissue loss has already occurred. PURPOSE/HYPOTHESIS: To evaluate longitudinal changes in knee articular cartilage and knee function in National Collegiate Athletic Association (NCAA) basketball players and their evolution over the competitive season and off-season. STUDY TYPE: Longitudinal, multisite cohort study. POPULATION: Thirty-two NCAA Division 1 athletes: 22 basketball players and 10 swimmers. FIELD STRENGTH/SEQUENCE: Bilateral magnetic resonance imaging (MRI) using a combined T1ρ and T2 magnetization-prepared angle-modulated portioned k-space spoiled gradient-echo snapshots (MAPSS) sequence at 3T. ASSESSMENT: We calculated T2 and T1ρ relaxation times to compare compositional cartilage changes between three timepoints: preseason 1, postseason 1, and preseason 2. Knee Osteoarthritis Outcome Scores (KOOS) were used to assess knee health. STATISTICAL TESTS: One-way variance model hypothesis test, general linear model, and chi-squared test. RESULTS: In the femoral articular cartilage of all athletes, we saw a global decrease in T2 and T1ρ relaxation times during the competitive season (all P < 0.05) and an increase in T2 and T1ρ relaxation times during the off-season (all P < 0.05). In the basketball players' femoral cartilage, the anterior and central compartments respectively had the highest T2 and T1ρ relaxation times following the competitive season and off-season. The basketball players had significantly lower KOOS measures in every domain compared with the swimmers: Pain (P < 0.05), Symptoms (P < 0.05), Function in Daily Living (P < 0.05), Function in Sport/Recreation (P < 0.05), and Quality of Life (P < 0.05). CONCLUSION: Our results indicate that T2 and T1ρ MRI can detect significant seasonal changes in the articular cartilage of basketball players and that there are regional differences in the articular cartilage that are indicative of basketball-specific stress on the femoral cartilage. This study demonstrates the potential of quantitative MRI to monitor global and regional cartilage health in athletes at risk of developing cartilage problems. LEVEL OF EVIDENCE: 2 Technical Efficacy Stage: 2.
Asunto(s)
Baloncesto , Cartílago Articular , Osteoartritis de la Rodilla , Cartílago Articular/diagnóstico por imagen , Estudios de Cohortes , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética , Calidad de Vida , Estaciones del AñoRESUMEN
Background Diffusion-weighted imaging (DWI) can depict the inflamed synovial membrane in arthritis. Purpose To study the diagnostic accuracy of DWI for the detection of arthritis compared with the clinical reference standard and to compare DWI to contrast material-enhanced MRI for the detection of synovial inflammation. Materials and Methods In this institutional review board-approved prospective study, 45 participants with juvenile idiopathic arthritis (JIA) or suspected of having JIA (seven boys, 38 girls; median age, 14 years [interquartile range, 12-16 years]) were included between December 2015 and December 2018. Study participants underwent pre- and postcontrast 3.0-T MRI of the knee with an additional DWI sequence. For the clinical reference standard, a multidisciplinary team determined the presence or absence of arthritis on the basis of clinical, laboratory, and imaging findings (excluding DWI). Two data sets were scored by two radiologists blinded to all clinical data; data set 1 contained pre- and postcontrast sequences (contrast-enhanced MRI), and data set 2 contained precontrast and DWI sequences (DWI). Diagnostic accuracy was determined by comparing the scores of the DWI data set to those of the clinical reference standard. Second, DWI was compared with contrast-enhanced MRI regarding detection of synovial inflammation. Results Sensitivity for detection of arthritis for DWI was 93% (13 of the 14 participants with arthritis were correctly classified with DWI; 95% confidence interval [CI]: 64%, 100%) and specificity was 81% (25 of 31 participants without arthritis were correctly classified with DWI; 95% CI: 62%, 92%). Scores for synovial inflammation at DWI and contrast-enhanced MRI agreed in 37 of 45 participants (82%), resulting in a sensitivity of 92% (12 of 13 participants; 95% CI: 62%, 100%) and specificity of 78% (25 of 32 participants; 95% CI: 60%, 90%) with DWI when contrast-enhanced MRI was considered the reference standard. Conclusion Diffusion-weighted imaging (DWI) was accurate in detecting arthritis in pediatric participants with juvenile idiopathic arthritis (JIA) or suspected of having JIA and showed agreement with contrast-enhanced MRI. The results indicate that DWI could replace contrast-enhanced MRI for imaging of synovial inflammation in this patient group. © RSNA, 2020 Online supplemental material is available for this article.
Asunto(s)
Artritis Juvenil/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Osteoartritis de la Rodilla/diagnóstico por imagen , Adolescente , Niño , Medios de Contraste , Femenino , Humanos , Masculino , Estudios Prospectivos , Sensibilidad y EspecificidadRESUMEN
Chemical exchange saturation transfer of glycosaminoglycans, gagCEST, is a quantitative MR technique that has potential for assessing cartilage proteoglycan content at field strengths of 7 T and higher. However, its utility at 3 T remains unclear. The objective of this work was to implement a rapid volumetric gagCEST sequence with higher gagCEST asymmetry at 3 T to evaluate its sensitivity to osteoarthritic changes in knee articular cartilage and in comparison with T2 and T1ρ measures. We hypothesize that gagCEST asymmetry at 3 T decreases with increasing severity of osteoarthritis (OA). Forty-two human volunteers, including 10 healthy subjects and 32 subjects with medial OA, were included in the study. Knee Injury and Osteoarthritis Outcome Scores (KOOS) were assessed for all subjects, and Kellgren-Lawrence grading was performed for OA volunteers. Healthy subjects were scanned consecutively at 3 T to assess the repeatability of the volumetric gagCEST sequence at 3 T. For healthy and OA subjects, gagCEST asymmetry and T2 and T1ρ relaxation times were calculated for the femoral articular cartilage to assess sensitivity to OA severity. Volumetric gagCEST imaging had higher gagCEST asymmetry than single-slice acquisitions (p = 0.015). The average scan-rescan coefficient of variation was 6.8%. There were no significant differences in average gagCEST asymmetry between younger and older healthy controls (p = 0.655) or between healthy controls and OA subjects (p = 0.310). T2 and T1ρ relaxation times were elevated in OA subjects (p < 0.001 for both) compared with healthy controls and both were moderately correlated with total KOOS scores (rho = -0.181 and rho = -0.332 respectively). The gagCEST technique developed here, with volumetric scan times under 10 min and high gagCEST asymmetry at 3 T, did not vary significantly between healthy subjects and those with mild-moderate OA. This further supports a limited utility for gagCEST imaging at 3 T for assessment of early changes in cartilage composition in OA.
Asunto(s)
Cartílago Articular/química , Glicosaminoglicanos , Articulación de la Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Osteoartritis de la Rodilla/diagnóstico por imagen , Proteoglicanos/análisis , Adulto , Anciano , Femenino , Fémur/diagnóstico por imagen , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Osteoartritis de la Rodilla/metabolismo , Reproducibilidad de los ResultadosRESUMEN
BACKGROUND: Ongoing arthritis in children with juvenile idiopathic arthritis (JIA) can result in cartilage damage. OBJECTIVE: To study the feasibility and repeatability of T1ρ for assessing knee cartilage in JIA and also to describe T1ρ values and study correlation between T1ρ and conventional MRI scores for disease activity. MATERIALS AND METHODS: Thirteen children with JIA or suspected JIA underwent 3-tesla (T) knee MRI that included conventional sequences and a T1ρ sequence. Segmentation of knee cartilage was carried out on T1ρ images. We used intraclass correlation coefficient to study the repeatability of segmentation in a subset of five children. We used the juvenile arthritis MRI scoring system to discriminate inflamed from non-inflamed knees. The Mann-Whitney U and Spearman correlation compared T1ρ between children with and without arthritis on MRI and correlated T1ρ with the juvenile arthritis MRI score. RESULTS: All children successfully completed the MRI examination. No images were excluded because of poor quality. Repeatability of T1ρ measurement had an intraclass correlation coefficient (ICC) of 0.99 (P<0.001). We observed no structural cartilage damage and found no differences in T1ρ between children with (n=7) and without (n=6) inflamed knees (37.8 ms vs. 31.7 ms, P=0.20). However, we observed a moderate correlation between T1ρ values and the juvenile arthritis MRI synovitis score (r=0.59, P=0.04). CONCLUSION: This pilot study suggests that T1ρ is a feasible and repeatable quantitative imaging technique in children. T1ρ values were associated with the juvenile arthritis MRI synovitis score.
Asunto(s)
Artritis Juvenil/diagnóstico por imagen , Cartílago Articular/diagnóstico por imagen , Articulación de la Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Adolescente , Niño , Estudios de Factibilidad , Femenino , Humanos , Masculino , Proyectos PilotoRESUMEN
BACKGROUND: Surgical resection of tongue cancer may impair swallowing and speech. Knowledge of tongue muscle architecture affected by the resection could aid in patient counseling. Diffusion tensor imaging (DTI) enables reconstructions of muscle architecture in vivo. Reconstructing crossing fibers in the tongue requires a higher-order diffusion model. PURPOSE: To develop a clinically feasible diffusion imaging protocol, which facilitates both DTI and constrained spherical deconvolution (CSD) reconstructions of tongue muscle architecture in vivo. STUDY TYPE: Cross-sectional study. SUBJECTS/SPECIMEN: One ex vivo bovine tongue resected en bloc from mandible to hyoid bone. Ten healthy volunteers (mean age 25.5 years; range 21-34 years; four female). FIELD STRENGTH/SEQUENCE: Diffusion-weighted echo planar imaging at 3 T using a high-angular resolution diffusion imaging scheme acquired twice with opposing phase-encoding for B0 -field inhomogeneity correction. The scan of the healthy volunteers was divided into four parts, in between which the volunteers were allowed to swallow, resulting in a total acquisition time of 10 minutes. ASSESSMENT: The ability of resolving crossing muscle fibers using CSD was determined on the bovine tongue specimen. A reproducible response function was estimated and the optimal peak threshold was determined for the in vivo tongue. The quality of tractography of the in vivo tongue was graded by three experts. STATISTICAL TESTS: The within-subject coefficient of variance was calculated for the response function. The qualitative results of the grading of DTI and CSD tractography were analyzed using a multilevel proportional odds model. RESULTS: Fiber orientation distributions in the bovine tongue specimen showed that CSD was able to resolve crossing muscle fibers. The response function could be determined reproducibly in vivo. CSD tractography displayed significantly improved tractography compared with DTI tractography (P = 0.015). DATA CONCLUSION: The 10-minute diffusion imaging protocol facilitates CSD fiber tracking with improved reconstructions of crossing tongue muscle fibers compared with DTI. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;50:96-105.
Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Fibras Musculares Esqueléticas/ultraestructura , Lengua/anatomía & histología , Lengua/diagnóstico por imagen , Adulto , Animales , Bovinos , Estudios Transversales , Imagen Eco-Planar , Femenino , Voluntarios Sanos , Humanos , MasculinoRESUMEN
The management of patients suffering from class III due to syndromic craniosynostosis requires a multidisciplinary team to prevent and correct the complex clinical features related to the syndrome. Among the main clinical features, the midface hypoplasia requires surgical advancement with a rigid external distraction device. The comparison of pre- and postdistraction lateral cephalometries is often difficult in these patients, because the craniofacial advancement mobilizes the landmarks routinely used in cephalometry. Aim of this study is to evaluate occlusal, maxillary, and facial changes obtained after the midface osteodistraction using as reference the PM plane, that does not undergo postsurgical spatial modifications.The before and after surgery lateral X-rays of 12 patients were compared to test the cephalometric protocol: 10 angles and 11 linear distances were evaluated.The cephalometric comparison before and after osteodistractions of syndromic class III, using as reference the Enlow's PM plane, has confirmed the data present in current literature, consisting in forward and downward movements of facial middle 3rd, with clockwise rotation of the splanchnocranium and increase of the facial heights. The use of the PM plane as reference could be the solution to problems that have been an obstacle for the study of occlusal and facial changes in patients affected by craniofacial dysostosis.
Asunto(s)
Cefalometría/métodos , Craneosinostosis/cirugía , Osteogénesis por Distracción/métodos , Craneosinostosis/diagnóstico por imagen , Huesos Faciales/diagnóstico por imagen , Huesos Faciales/cirugía , Humanos , Maxilar/diagnóstico por imagen , Maxilar/cirugíaRESUMEN
PURPOSE: 3D time-resolved (4D) phase contrast MRI can be used to study muscle contraction. However, 3D coverage with sufficient spatiotemporal resolution can only be achieved by interleaved acquisitions during many repetitions of the motion task, resulting in long scan times. The aim of this study was to develop a compressed sensing accelerated 4D phase contrast MRI technique for quantification of velocities and strain rate of the muscles in the lower leg during active plantarflexion/dorsiflexion. METHODS: Nine healthy volunteers were scanned during active dorsiflexion/plantarflexion task. For each volunteer, we acquired a reference scan, as well as 4 different accelerated scans (k-space undersampling factors: 3.14X, 4.09X, 4.89X, and 6.41X) obtained using Cartesian Poisson disk undersampling schemes. The data was reconstructed using a compressed sensing pipeline. For each scan, velocity and strain rate values were quantified in the gastrocnemius lateralis, gastrocnemius medialis, tibialis anterior, and soleus. RESULTS: No significant differences in velocity values were observed as a function acceleration factor in the investigated muscles. The strain rate calculation resulted in one positive (s+ ) and one negative (s- ) eigenvalue, whereas the third eigenvalue (s3 ) was consistently 0 for all the acquisitions. No significant differences were observed for the strain rate eigenvalues as a function of acceleration factor. CONCLUSIONS: Data undersampling combined with compressed sensing reconstruction allowed obtainment of time-resolved phase contrast acquisitions with 3D coverage and quantitative information comparable to the reference scan. The 3D sensitivity of the method can help in understanding the connection between muscle architecture and muscle function in future studies.
Asunto(s)
Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Contracción Muscular/fisiología , Músculo Esquelético/diagnóstico por imagen , Algoritmos , Femenino , Humanos , Pierna/diagnóstico por imagen , MasculinoRESUMEN
PURPOSE: To introduce a method for obtaining fat-suppressed images in real-time MRI of moving joints at 3 Tesla (T) using a bSSFP sequence with phase detection to enhance visualization of soft tissue structures during motion. METHODS: The wrist and knee of nine volunteers were imaged with a real-time bSSFP sequence while performing dynamic tasks. For appropriate choice of sequence timing parameters, water and fat pixels showed an out-of-phase behavior, which was exploited to reconstruct water and fat images. Additionally, a 2-point Dixon sequence was used for dynamic imaging of the joints, and resulting water and fat images were compared with our proposed method. RESULTS: The joints could be visualized with good water-fat separation and signal-to-noise ratio (SNR), while maintaining a relatively high temporal resolution (5 fps in knee imaging and 10 fps in wrist imaging). The proposed method produced images of moving joints with higher SNR and higher image quality when compared with the Dixon method. CONCLUSIONS: Water-fat separation is feasible in real-time MRI of moving knee and wrist at 3 T. PS-bSSFP offers movies with higher SNR and higher diagnostic quality when compared with Dixon scans. Magn Reson Med 78:58-68, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Asunto(s)
Tejido Adiposo/diagnóstico por imagen , Agua Corporal/diagnóstico por imagen , Articulaciones/diagnóstico por imagen , Articulaciones/fisiología , Imagen por Resonancia Magnética/métodos , Rango del Movimiento Articular/fisiología , Procesamiento de Señales Asistido por Computador , Sistemas de Computación , Femenino , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Técnica de Sustracción , Adulto JovenRESUMEN
Anatomical (static) magnetic resonance imaging (MRI) is the most useful imaging technique for the evaluation and assessment of internal derangement of the knee, but does not provide dynamic information and does not allow the study of the interaction of the different tissues during motion. As knee pain is often only experienced during dynamic tasks, the ability to obtain four-dimensional (4D) images of the knee during motion could improve the diagnosis and provide a deeper understanding of the knee joint. In this work, we present a novel approach for dynamic, high-resolution, 4D imaging of the freely moving knee without the need for external triggering. The dominant knee of five healthy volunteers was scanned during a flexion/extension task. To evaluate the effects of non-uniform motion and poor coordination skills on the quality of the reconstructed images, we performed a comparison between fully free movement and movement instructed by a visual cue. The trigger signal for self-gating was extracted using principal component analysis (PCA), and the images were reconstructed using a parallel imaging and compressed sensing reconstruction pipeline. The reconstructed 4D movies were scored for image quality and used to derive bone kinematics through image registration. Using our method, we were able to obtain 4D high-resolution movies of the knee without the need for external triggering hardware. The movies obtained with and without instruction did not differ significantly in terms of image scoring and quantitative values for tibiofemoral kinematics. Our method showed to be robust for the extraction of the self-gating signal even for uninstructed motion. This can make the technique suitable for patients who, as a result of pain, may find it difficult to comply exactly with instructions. Furthermore, bone kinematics can be derived from accelerated MRI without the need for additional hardware for triggering.
Asunto(s)
Fémur/fisiología , Imagen por Resonancia Magnética/métodos , Tibia/fisiología , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Articulación de la Rodilla/fisiologíaRESUMEN
In this study we investigated the changes in fiber length and diffusion parameters as a consequence of passive lengthening and stretching of the calf muscles. We hypothesized that changes in radial diffusivity (RD) are caused by changes in the muscle fiber cross sectional area (CSA) as a consequence of lengthening and shortening of the muscle. Diffusion Tensor MRI (DT-MRI) measurements were made twice in five healthy volunteers, with the foot in three different positions (30° plantarflexion, neutral position and 15° dorsiflexion). The muscles of the calf were manually segmented on co-registered high resolution anatomical scans, and maps of RD and axial diffusivity (AD) were reconstructed from the DT-MRI data. Fiber tractography was performed and mean fiber length was calculated for each muscle group. Significant negative correlations were found between the changes in RD and changes in fiber length in the dorsiflexed and plantarflexed positions, compared with the neutral foot position. Changes in AD did not correlate with changes in fiber length. Assuming a simple cylindrical model with constant volume for the muscle fiber, the changes in the muscle fiber CSA were calculated from the changes in fiber length. In line with our hypothesis, we observed a significant positive correlation of the CSA with the measured changes in RD. In conclusion, we showed that changes in diffusion coefficients induced by passive muscle stretching and lengthening can be explained by changes in muscle CSA, advancing the physiological interpretation of parameters derived from skeletal muscle DT-MRI.
Asunto(s)
Imagen de Difusión Tensora/métodos , Interpretación de Imagen Asistida por Computador/métodos , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/anatomía & histología , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología , Adulto , Humanos , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Estadística como Asunto , Resistencia a la Tracción/fisiologíaRESUMEN
PURPOSE: To study diffusion-prepared neurography optimized for a large field-of-view (FOV) to include the neck and both shoulders. In a large FOV poor homogeneity of the magnetic field (B0 ) often leads to poor image quality and possibly to poor diagnostic accuracy. The aim was therefore to find an optimal (combination of) shimming method(s) for diffusion-prepared neurography in a large FOV. MATERIALS AND METHODS: A 3D diffusion-prepared sequence with a large FOV was tested with and without the use of a susceptibility-matched pillow combined with image-based (IB) or standard shimming in six healthy volunteers on a 3T system. B0 , B1 , signal to noise ratio (SNR), and contrast to noise ratio (CNR) were compared between all protocols. Additionally, nerve visibility, fat suppression, artifacts, and overall image quality were ordinally (5-point scale) assessed by two readers. Furthermore, correlations between B0 and B1 (offset and variation) and SNR, CNR, and image quality were explored. RESULTS: The use of the susceptibility-matched pillow led to a 43% reduction of B0 variation over the brachial plexus compared to the situation without a pillow (P < 0.05). The combination of the pillow with IB-shimming and the optimized diffusion-prepared sequence resulted in good nerve visibility, good fat suppression, no artifacts that would hinder clinical diagnosis, and a good overall quality (median scores ≥4). Reducing B0 variation was associated with SNR, CNR, and the above-mentioned scored features (P < 0.05). CONCLUSION: The use of a susceptibility-matched pillow in combination with IB-shimming enables robust and high-quality neurography of the complete brachial plexus.