Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Life Sci Space Res (Amst) ; 18: 52-63, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30100148

RESUMEN

Measurements of the incident fluence of HZE particles, as a function of LET, are used to determine absorbed dose as well as Quality Factors for assigning risk estimates to astronauts during manned space missions. These data are often based on thin solid state detectors that measure energy deposition, dE, and the assumption that the trajectory of the particle, dx, is equivalent to the thickness of the detector. Heavy ions often fragment while penetrating shielding materials in vehicles or habitats. Projectile fragments can be clustered spatially and temporally at the location of the thin detector which are then misclassified as a single particle. Eliminating the confounding effects of coincident events is the first step in extending the reach of flight instruments to identify the charge and velocity of individual particles. Identification of individual particles, in a fragmentation spectrum, will require that detection systems have sufficient segmentation to eliminate coincident events. The objective of this study was to reduce coincident events while avoiding over-design and complexity. Monte Carlo simulations, using Geant4, were performed for 4He, 12C, 28Si and 56Fe ions at energies of 300, 900 and 2400 MeV/n incident upon aluminum shields having areal densities of 5.4, 13.5, and 54 g/cm2. The identity, energy and spatial distribution of all particles downstream from the shielding were analyzed using a novel approach based on proximity distributions. Results indicated that pixel dimensions on the order of 1 mm were sufficient to reduce errors caused by coincident events for active space radiation detectors.


Asunto(s)
Astronautas , Radiación Cósmica , Planeta Tierra , Exposición Profesional/análisis , Monitoreo de Radiación/métodos , Protección Radiológica , Humanos , Método de Montecarlo , Dosis de Radiación , Monitoreo de Radiación/instrumentación , Efectividad Biológica Relativa , Vuelo Espacial
2.
Life Sci Space Res (Amst) ; 7: 90-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26553642

RESUMEN

In order to define the ranges of relevant neutron energies for the purposes of measurement and dosimetry in space, we have performed a series of Monte Carlo transport model calculations that predict the neutron field created by Galactic Cosmic Ray interactions inside a variety of simple shielding configurations. These predictions indicate that a significant fraction of the neutron fluence and neutron effective dose lies in the region above 20 MeV up to several hundred MeV. These results are consistent over thicknesses of shielding that range from very thin (2.7 g/cm(2)) to thick (54 g/cm(2)), and over both shielding materials considered (aluminum and water). In addition to these results, we have also investigated whether simplified Galactic Cosmic Ray source terms can yield predictions that are equivalent to simulations run with a full GCR source term. We found that a source using a GCR proton and helium spectrum together with a scaled oxygen spectrum yielded nearly identical results to a full GCR spectrum, and that the scaling factor used for the oxygen spectrum was independent of shielding material and thickness. Good results were also obtained using a GCR proton spectrum together with a scaled helium spectrum, with the helium scaling factor also independent of shielding material and thickness. Using a proton spectrum alone was unable to reproduce the full GCR results.


Asunto(s)
Neutrones , Radiación Cósmica , Modelos Teóricos , Método de Montecarlo , Protones , Dosis de Radiación , Protección Radiológica , Radiometría , Vuelo Espacial
3.
Life Sci Space Res (Amst) ; 1: 96-102, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26432594

RESUMEN

NASA has derived new models for radiological risk assessment based on epidemiological data and radiation biology including differences in Relative Biological Effectiveness for leukemia and solid tumors. Comprehensive approaches were used to develop new risk cross sections and the extension of these into recommendations for risk assessment during space missions. The methodology relies on published data generated and the extensive research initiative managed by the NASA Human Research Program (HRP) and reviewed by the National Academy of Sciences. This resulted in recommendations for revised specifications of quality factors, QNASA(Z,ß) in terms of track structure concepts that extend beyond LET alone. The new paradigm for quality factors placed demands on radiation monitoring procedures that are not satisfied by existing dosimetry systems or particle spectrometers that are practical for space exploration where mass, volume, band width and power consumption are highly constrained. We have proposed a new definition of quality factors that relaxes the requirements for identifying charge, Z, and velocity, ß, of the incident radiation while still preserving the functional form of the inherent risk functions. The departure from the exact description of QNASA(Z,ß) is that the revised values are new functions of LET for solid cancers and leukemia. We present the motivation and process for developing the revised quality factors. We describe results of extensive simulations using GCR distributions in free space as well as the resulting spectra of primary and secondary particles behind aluminum shields and penetration through water. In all cases the revised dose averaged quality factors agreed with those based on the values obtained using QNASA(Z,ß). This provides confidence that emerging technologies for space radiation dosimetry can provide real time measurements of dose and dose equivalent while satisfying constraints on size, mass, power and bandwidth. The revised quality factors are sufficiently generalized to be applicable to radiation protection practices beyond space exploration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA