Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 185(2): 230-231, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35063070

RESUMEN

Determining the structural plasticity and dynamics of nuclear pore complexes (NPCs) are major challenges. In this issue of Cell, Akey et al. present comprehensive NPC structures from in vitro and in vivo preparations, demonstrating multiple NPC forms in single cells while providing insight into the evolutionary origin of NPC architecture.


Asunto(s)
Proteínas de Complejo Poro Nuclear , Poro Nuclear
2.
Biophys J ; 118(5): 1090-1100, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32049056

RESUMEN

Calmodulin (CaM) is proposed to modulate activity of the skeletal muscle sarcoplasmic reticulum (SR) calcium release channel (ryanodine receptor, RyR1 isoform) via a mechanism dependent on the conformation of RyR1-bound CaM. However, the correlation between CaM structure and functional regulation of RyR in physiologically relevant conditions is largely unknown. Here, we have used time-resolved fluorescence resonance energy transfer (TR-FRET) to study structural changes in CaM that may play a role in the regulation of RyR1. We covalently labeled each lobe of CaM (N and C) with fluorescent probes and used intramolecular TR-FRET to assess interlobe distances when CaM is bound to RyR1 in SR membranes, purified RyR1, or a peptide corresponding to the CaM-binding domain of RyR (RyRp). TR-FRET resolved an equilibrium between two distinct structural states (conformations) of CaM, each characterized by an interlobe distance and Gaussian distribution width (disorder). In isolated CaM, at low Ca2+, the two conformations of CaM are resolved, centered at 5 nm (closed) and 7 nm (open). At high Ca2+, the equilibrium shifts to favor the open conformation. In the presence of RyRp at high Ca2+, the closed conformation shifts to a more compact conformation and is the major component. When CaM is bound to full-length RyR1, either purified or in SR membranes, strikingly different results were obtained: 1) the two conformations are resolved and more ordered, 2) the open state is the major component, and 3) Ca2+ stabilized the closed conformation by a factor of two. We conclude that the Ca2+-dependent structural distribution of CaM bound to RyR1 is distinct from that of CaM bound to RyRp. We propose that the function of RyR1 is tuned to the Ca2+-dependent structural dynamics of bound CaM.


Asunto(s)
Calcio , Calmodulina , Calcio/metabolismo , Calmodulina/metabolismo , Músculo Esquelético/metabolismo , Canal Liberador de Calcio Receptor de Rianodina , Retículo Sarcoplasmático/metabolismo
3.
Nat Chem Biol ; 12(10): 860-6, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27547920

RESUMEN

Oxidation of methionine disrupts the structure and function of a range of proteins, but little is understood about the chemistry that underlies these perturbations. Using quantum mechanical calculations, we found that oxidation increased the strength of the methionine-aromatic interaction motif, a driving force for protein folding and protein-protein interaction, by 0.5-1.4 kcal/mol. We found that non-hydrogen-bonded interactions between dimethyl sulfoxide (a methionine analog) and aromatic groups were enriched in both the Protein Data Bank and Cambridge Structural Database. Thermal denaturation and NMR spectroscopy experiments on model peptides demonstrated that oxidation of methionine stabilized the interaction by 0.5-0.6 kcal/mol. We confirmed the biological relevance of these findings through a combination of cell biology, electron paramagnetic resonance spectroscopy and molecular dynamics simulations on (i) calmodulin structure and dynamics, and (ii) lymphotoxin-α binding toTNFR1. Thus, the methionine-aromatic motif was a determinant of protein structural and functional sensitivity to oxidative stress.


Asunto(s)
Hidrocarburos Aromáticos/química , Metionina/química , Hidrocarburos Aromáticos/metabolismo , Metionina/metabolismo , Modelos Moleculares , Oxidación-Reducción , Teoría Cuántica
4.
Biochem Biophys Res Commun ; 456(2): 567-72, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25478640

RESUMEN

We have used electron paramagnetic resonance (EPR) to examine the structural impact of oxidizing specific methionine (M) side chains in calmodulin (CaM). It has been shown that oxidation of either M109 or M124 in CaM diminishes CaM regulation of the muscle calcium release channel, the ryanodine receptor (RyR), and that mutation of M to Q (glutamine) in either case produces functional effects identical to those of oxidation. Here we have used site-directed spin labeling and double electron-electron resonance (DEER), a pulsed EPR technique that measures distances between spin labels, to characterize the structural changes resulting from these mutations. Spin labels were attached to a pair of introduced cysteine residues, one in the C-lobe (T117C) and one in the N-lobe (T34C) of CaM, and DEER was used to determine the distribution of interspin distances. Ca binding induced a large increase in the mean distance, in concert with previous X-ray crystallography and NMR data, showing a closed structure in the absence of Ca and an open structure in the presence of Ca. DEER revealed additional information about CaM's structural heterogeneity in solution: in both the presence and absence of Ca, CaM populates both structural states, one with probes separated by ∼4nm (closed) and another at ∼6nm (open). Ca shifts the structural equilibrium constant toward the open state by a factor of 13. DEER reveals the distribution of interprobe distances, showing that each of these states is itself partially disordered, with the width of each population ranging from 1 to 3nm. Both mutations (M109Q and M124Q) decrease the effect of Ca on the structure of CaM, primarily by decreasing the closed-to-open equilibrium constant in the presence of Ca. We propose that Met oxidation alters CaM's functional interaction with its target proteins by perturbing this Ca-dependent structural shift.


Asunto(s)
Calmodulina/química , Metionina/química , Animales , Calmodulina/genética , Espectroscopía de Resonancia por Spin del Electrón , Glutamina/química , Glutamina/genética , Metionina/genética , Mutación , Oxidación-Reducción , Estructura Secundaria de Proteína , Marcadores de Spin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA