RESUMEN
[This corrects the article DOI: 10.1371/journal.pbio.3001674.].
RESUMEN
Understanding tropical biology is important for solving complex problems such as climate change, biodiversity loss, and zoonotic pandemics, but biology curricula view research mostly via a temperate-zone lens. Integrating tropical research into biology education is urgently needed to tackle these issues.
Asunto(s)
Biodiversidad , Cambio Climático , Biología , Clima TropicalRESUMEN
PREMISE: Plant ecological strategies are often defined by the integration of underlying traits related to resource acquisition, allocation, and growth. Correlations between key traits across diverse plants suggest that variation in plant ecological strategies is largely driven by a fast-slow continuum of plant economics. However, trait correlations may not be constant through the life of a leaf, and it is still poorly understood how trait function varies over time in long-lived leaves. METHODS: Here, we compared trait correlations related to resource acquisition and allocation across three different mature frond age cohorts in a tropical fern species, Saccoloma inaequale. RESULTS: Fronds exhibited high initial investments of nitrogen and carbon, but with declining return in photosynthetic capacity after the first year. In the youngest fronds, we found water-use efficiency to be significantly lower than in the oldest mature fronds due to increased transpiration rates. Our data suggest that middle-aged fronds are more efficient relative to younger, less water-use efficient fronds and that older fronds exhibit greater nitrogen investments without higher photosynthetic return. In addition, several trait correlations expected under the leaf economics spectrum (LES) do not hold within this species, and some trait correlations only appear in fronds of a specific developmental age. CONCLUSIONS: These findings contextualize the relationship between traits and leaf developmental age with those predicted to underlie plant ecological strategy and the LES and are among the first pieces of evidence for when relative physiological trait efficiency is maximized in a tropical fern species.
Asunto(s)
Helechos , Helechos/fisiología , Hojas de la Planta/fisiología , Fotosíntesis , Plantas , Nitrógeno , Agua/fisiologíaRESUMEN
The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon. With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment and other environmental stresses. As pressures mount, it is vital to know whether existing reserves can sustain their biodiversity. A critical constraint in addressing this question has been that data describing a broad array of biodiversity groups have been unavailable for a sufficiently large and representative sample of reserves. Here we present a uniquely comprehensive data set on changes over the past 20 to 30 years in 31 functional groups of species and 21 potential drivers of environmental change, for 60 protected areas stratified across the world's major tropical regions. Our analysis reveals great variation in reserve 'health': about half of all reserves have been effective or performed passably, but the rest are experiencing an erosion of biodiversity that is often alarmingly widespread taxonomically and functionally. Habitat disruption, hunting and forest-product exploitation were the strongest predictors of declining reserve health. Crucially, environmental changes immediately outside reserves seemed nearly as important as those inside in determining their ecological fate, with changes inside reserves strongly mirroring those occurring around them. These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.
Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/estadística & datos numéricos , Especies en Peligro de Extinción/estadística & datos numéricos , Árboles/fisiología , Clima Tropical , Agricultura/estadística & datos numéricos , Animales , Recolección de Datos , Ecología/estadística & datos numéricos , Contaminación Ambiental/efectos adversos , Contaminación Ambiental/estadística & datos numéricos , Incendios/estadística & datos numéricos , Agricultura Forestal/estadística & datos numéricos , Entrevistas como Asunto , Minería/estadística & datos numéricos , Crecimiento Demográfico , Lluvia , Reproducibilidad de los Resultados , Investigadores , Encuestas y Cuestionarios , TemperaturaRESUMEN
Many climbing mammals are able to reverse normal hind foot posture to effect the grip necessary to descend headfirst or to hang upside down. Such hind foot reversal is known in sciurids, procyonids, felids, viverrids, tupaiids, prosimians, and marsupials. The joint movements involved, however, have never been documented unequivocally although various interpretations (some contradictory) have been made. We report here radiographic data from species of the genera Didelphis, Felis, Nasua, Nycticebus, Potos, Sciurus, and Tupaia. In the six eutherians studied, three joints are involved, and there is a common pattern in the mechanism: crurotalar plantarflexion, subtalar inversion, and transverse tarsal supination. Hind foot reversal represents the development of an unusual degree of excursion at these joints, rather than the appearance of any new type of movement. In Didelphis the mechanism is quite different: a bicondylar, spiral tibiotalar joint is the principal site of inversion/abduction movements. This specialization is characteristic of didelphids and phalangerids, and occurs in the extinct multituberculates as well; it is not found in macropodids (which are like eutherians in crurotalar joint structure) or other marsupial families. This diversity in pedal structure and function is evidently the result of parallel evolution from the type of tibiotalar joint of cynodonts and early mammals. In Morganucodon the bulbous, hemispheroidal proximal surface of the talus bears two tibial facets. These facets are represented in didelphids and multituberculates as sulci, whereas in macropodids and eutherians they developed as the proximal and medial surfaces of the talar trochlea. Among living mammals, the primitive hemispheroidal joint is retained among monotremes as a ball and socket joint.