Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 619(7968): 160-166, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37258666

RESUMEN

KRAS is one of the most commonly mutated proteins in cancer, and efforts to directly inhibit its function have been continuing for decades. The most successful of these has been the development of covalent allele-specific inhibitors that trap KRAS G12C in its inactive conformation and suppress tumour growth in patients1-7. Whether inactive-state selective inhibition can be used to therapeutically target non-G12C KRAS mutants remains under investigation. Here we report the discovery and characterization of a non-covalent inhibitor that binds preferentially and with high affinity to the inactive state of KRAS while sparing NRAS and HRAS. Although limited to only a few amino acids, the evolutionary divergence in the GTPase domain of RAS isoforms was sufficient to impart orthosteric and allosteric constraints for KRAS selectivity. The inhibitor blocked nucleotide exchange to prevent the activation of wild-type KRAS and a broad range of KRAS mutants, including G12A/C/D/F/V/S, G13C/D, V14I, L19F, Q22K, D33E, Q61H, K117N and A146V/T. Inhibition of downstream signalling and proliferation was restricted to cancer cells harbouring mutant KRAS, and drug treatment suppressed KRAS mutant tumour growth in mice, without having a detrimental effect on animal weight. Our study suggests that most KRAS oncoproteins cycle between an active state and an inactive state in cancer cells and are dependent on nucleotide exchange for activation. Pan-KRAS inhibitors, such as the one described here, have broad therapeutic implications and merit clinical investigation in patients with KRAS-driven cancers.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas p21(ras) , Transducción de Señal , Animales , Ratones , Peso Corporal , Activación Enzimática , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Nucleótidos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal/efectos de los fármacos , División Celular/efectos de los fármacos , Especificidad por Sustrato
2.
J Biomol NMR ; 78(1): 1-8, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37816933

RESUMEN

In this study, we present the synthesis and incorporation of a metabolic isoleucine precursor compound for selective methylene labeling. The utility of this novel α-ketoacid isotopologue is shown by incorporation into the protein Brd4-BD1, which regulates gene expression by binding to acetylated histones. High quality single quantum 13C-1 H-HSQC were obtained, as well as triple quantum HTQC spectra, which are superior in terms of significantly increased 13C-T2 times. Additionally, large chemical shift perturbations upon ligand binding were observed. Our study thus proves the great sensitivity of this precursor as a reporter for side-chain dynamic studies and for investigations of CH-π interactions in protein-ligand complexes.


Asunto(s)
Isoleucina , Factores de Transcripción , Factores de Transcripción/química , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligandos , Resonancia Magnética Nuclear Biomolecular
3.
Chembiochem ; 25(6): e202300762, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38294275

RESUMEN

Precise information regarding the interaction between proteins and ligands at molecular resolution is crucial for effectively guiding the optimization process from initial hits to lead compounds in early stages of drug development. In this study, we introduce a novel aliphatic side chain isotope-labeling scheme to directly probe interactions between ligands and aliphatic sidechains using NMR techniques. To demonstrate the applicability of this method, we selected a set of Brd4-BD1 binders and analyzed 1 H chemical shift perturbation resulting from CH-π interaction of Hß -Val and Hγ -Leu as CH donors with corresponding ligand aromatic moieties as π acceptors.


Asunto(s)
Proteínas Nucleares , Valina , Leucina/química , Valina/química , Ligandos , Factores de Transcripción
4.
Chemphyschem ; 25(1): e202300636, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37955910

RESUMEN

The availability of high-resolution 3D structural information is crucial for investigating guest-host systems across a wide range of fields. In the context of drug discovery, the information is routinely used to establish and validate structure-activity relationships, grow initial hits from screening campaigns, and to guide molecular docking. For the generation of protein-ligand complex structural information, X-ray crystallography is the experimental method of choice, however, with limited information on protein flexibility. An experimentally verified structural model of the binding interface in the native solution-state would support medicinal chemists in their molecular design decisions. Here we demonstrate that protein-bound ligand 1 H NMR chemical shifts are highly sensitive and accurate probes for the immediate chemical environment of protein-ligand interfaces. By comparing the experimental ligand 1 H chemical shift values with those computed from the X-ray structure using quantum mechanics methodology, we identify significant disagreements for parts of the ligand between the two experimental techniques. We show that quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) ensembles can be used to refine initial X-ray co-crystal structures resulting in a better agreement with experimental 1 H ligand chemical shift values. Overall, our findings highlight the usefulness of ligand 1 H NMR chemical shift information in combination with a QM/MM MD workflow for generating protein-ligand ensembles that accurately reproduce solution structural data.


Asunto(s)
Imagen por Resonancia Magnética , Proteínas , Simulación del Acoplamiento Molecular , Ligandos , Espectroscopía de Resonancia Magnética/métodos , Proteínas/química
5.
Proc Natl Acad Sci U S A ; 116(32): 15823-15829, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31332011

RESUMEN

The 3 human RAS genes, KRAS, NRAS, and HRAS, encode 4 different RAS proteins which belong to the protein family of small GTPases that function as binary molecular switches involved in cell signaling. Activating mutations in RAS are among the most common oncogenic drivers in human cancers, with KRAS being the most frequently mutated oncogene. Although KRAS is an excellent drug discovery target for many cancers, and despite decades of research, no therapeutic agent directly targeting RAS has been clinically approved. Using structure-based drug design, we have discovered BI-2852 (1), a KRAS inhibitor that binds with nanomolar affinity to a pocket, thus far perceived to be "undruggable," between switch I and II on RAS; 1 is mechanistically distinct from covalent KRASG12C inhibitors because it binds to a different pocket present in both the active and inactive forms of KRAS. In doing so, it blocks all GEF, GAP, and effector interactions with KRAS, leading to inhibition of downstream signaling and an antiproliferative effect in the low micromolar range in KRAS mutant cells. These findings clearly demonstrate that this so-called switch I/II pocket is indeed druggable and provide the scientific community with a chemical probe that simultaneously targets the active and inactive forms of KRAS.


Asunto(s)
Descubrimiento de Drogas , Preparaciones Farmacéuticas/química , Proteínas Proto-Oncogénicas p21(ras)/química , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Nanopartículas/química
6.
Nat Chem Biol ; 15(8): 846, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31267096

RESUMEN

In the version of this article originally published, several lines of text in the last paragraph of the right column on page 1 of the PDF were transposed into the bottom paragraph of the left column. The affected text of the left column should read "The ATP-dependent activities of the BAF (SWI/SNF) chromatin remodeling complexes affect the positioning of nucleosomes on DNA and thereby many cellular processes related to chromatin structure, including transcription, DNA repair and decatenation of chromosomes during mitosis12,13." The affected text of the right column should read "SMARCA2/4BD inhibitors are thus precluded from use for the treatment of SMARCA4 mutant cancers but could provide attractive ligands for PROTAC conjugation. Small molecules binding to other bromodomains have been successfully converted into PROTACs by conjugating them with structures capable of binding to the E3 ligases von Hippel-Lindau (VHL) or cereblon5,6,10,11,25,26,27." The errors have been corrected in the PDF version of the paper.

7.
Nat Chem Biol ; 15(7): 672-680, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31178587

RESUMEN

Targeting subunits of BAF/PBAF chromatin remodeling complexes has been proposed as an approach to exploit cancer vulnerabilities. Here, we develop proteolysis targeting chimera (PROTAC) degraders of the BAF ATPase subunits SMARCA2 and SMARCA4 using a bromodomain ligand and recruitment of the E3 ubiquitin ligase VHL. High-resolution ternary complex crystal structures and biophysical investigation guided rational and efficient optimization toward ACBI1, a potent and cooperative degrader of SMARCA2, SMARCA4 and PBRM1. ACBI1 induced anti-proliferative effects and cell death caused by SMARCA2 depletion in SMARCA4 mutant cancer cells, and in acute myeloid leukemia cells dependent on SMARCA4 ATPase activity. These findings exemplify a successful biophysics- and structure-based PROTAC design approach to degrade high profile drug targets, and pave the way toward new therapeutics for the treatment of tumors sensitive to the loss of BAF complex ATPases.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Proteínas de Unión al ADN/genética , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/genética , Proliferación Celular , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Estructura Molecular , Proteínas Nucleares/metabolismo
8.
Nat Chem Biol ; 15(8): 822-829, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31285596

RESUMEN

Here, we report the fragment-based discovery of BI-9321, a potent, selective and cellular active antagonist of the NSD3-PWWP1 domain. The human NSD3 protein is encoded by the WHSC1L1 gene located in the 8p11-p12 amplicon, frequently amplified in breast and squamous lung cancer. Recently, it was demonstrated that the PWWP1 domain of NSD3 is required for the viability of acute myeloid leukemia cells. To further elucidate the relevance of NSD3 in cancer biology, we developed a chemical probe, BI-9321, targeting the methyl-lysine binding site of the PWWP1 domain with sub-micromolar in vitro activity and cellular target engagement at 1 µM. As a single agent, BI-9321 downregulates Myc messenger RNA expression and reduces proliferation in MOLM-13 cells. This first-in-class chemical probe BI-9321, together with the negative control BI-9466, will greatly facilitate the elucidation of the underexplored biological function of PWWP domains.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Proteínas Nucleares/antagonistas & inhibidores , Sistemas CRISPR-Cas , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Regulación de la Expresión Génica/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Dominios Proteicos , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo
9.
Am J Med Genet A ; 182(3): 597-606, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31825160

RESUMEN

The RASopathies are a group of genetic disorders that result from germline pathogenic variants affecting RAS-mitogen activated protein kinase (MAPK) pathway genes. RASopathies share RAS/MAPK pathway dysregulation and share phenotypic manifestations affecting numerous organ systems, causing lifelong and at times life-limiting medical complications. RASopathies may benefit from precision medicine approaches. For this reason, the Sixth International RASopathies Symposium focused on exploring precision medicine. This meeting brought together basic science researchers, clinicians, clinician scientists, patient advocates, and representatives from pharmaceutical companies and the National Institutes of Health. Novel RASopathy genes, variants, and animal models were discussed in the context of medication trials and drug development. Attempts to define and measure meaningful endpoints for treatment trials were discussed, as was drug availability to patients after trial completion.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas ras/genética , Enfermedades Genéticas Congénitas/patología , Mutación de Línea Germinal/genética , Humanos , Transducción de Señal/genética
10.
Angew Chem Int Ed Engl ; 59(35): 14861-14868, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32421895

RESUMEN

While CH-π interactions with target proteins are crucial determinants for the affinity of arguably every drug molecule, no method exists to directly measure the strength of individual CH-π interactions in drug-protein complexes. Herein, we present a fast and reliable methodology called PI (π interactions) by NMR, which can differentiate the strength of protein-ligand CH-π interactions in solution. By combining selective amino-acid side-chain labeling with 1 H-13 C NMR, we are able to identify specific protein protons of side-chains engaged in CH-π interactions with aromatic ring systems of a ligand, based solely on 1 H chemical-shift values of the interacting protein aromatic ring protons. The information encoded in the chemical shifts induced by such interactions serves as a proxy for the strength of each individual CH-π interaction. PI by NMR changes the paradigm by which chemists can optimize the potency of drug candidates: direct determination of individual π interactions rather than averaged measures of all interactions.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Proteínas/química , Humanos , Modelos Moleculares
11.
Chemistry ; 25(52): 12037-12041, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31231840

RESUMEN

Natural products have proven to be a rich source of molecular architectures for drugs. Here, an integrated approach to natural product screening is proposed, which uncovered eight new natural product scaffolds for KRAS-the most frequently mutated oncogenic driver in human cancers, which has remained thus far undrugged. The approach combines aspects of virtual screening, fragment-based screening, structure-activity relationships (SAR) by NMR, and structure-based drug discovery to overcome the limitations in traditional natural product approaches. By using our approach, a new "snugness of fit" scoring function and the first crystal-soaking system of the active form of KRASG12D , the protein-ligand X-ray structures of a tricyclic indolopyrrole fungal alkaloid and an indoloisoquinolinone have been successfully elucidated. The natural product KRAS hits discovered provide fruitful ground for the optimization of highly potent natural-product-based inhibitors of the active form of oncogenic RAS. This integrated approach for screening natural products also holds promise for other "undruggable" targets.

14.
J Med Chem ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009041

RESUMEN

Identifying promising chemical starting points for small molecule inhibitors of active, GTP-loaded KRAS "on" remains of great importance to clinical oncology and represents a significant challenge in medicinal chemistry. Here, we describe broadly applicable learnings from a KRAS hit finding campaign: While we initially identified KRAS inhibitors in a biochemical high-throughput screen, we later discovered that compound potencies were all but assay artifacts linked to metal salts interfering with KRAS AlphaScreen assay technology. The source of the apparent biochemical KRAS inhibition was ultimately traced to unavoidable palladium impurities from chemical synthesis. This discovery led to the development of a Metal Ion Interference Set (MIIS) for up-front assay development and testing. Profiling of the MIIS across 74 assays revealed a reduced interference liability of label-free biophysical assays and, as a result, provided general estimates for luminescence- and fluorescence-based assay susceptibility to metal salt interference.

15.
J Med Chem ; 65(21): 14614-14629, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36300829

RESUMEN

Activating mutations in KRAS are the most frequent oncogenic alterations in cancer. The oncogenic hotspot position 12, located at the lip of the switch II pocket, offers a covalent attachment point for KRASG12C inhibitors. To date, KRASG12C inhibitors have been discovered by first covalently binding to the cysteine at position 12 and then optimizing pocket binding. We report on the discovery of the in vivo active KRASG12C inhibitor BI-0474 using a different approach, in which small molecules that bind reversibly to the switch II pocket were identified and then optimized for non-covalent binding using structure-based design. Finally, the Michael acceptor containing warhead was attached. Our approach offers not only an alternative approach to discovering KRASG12C inhibitors but also provides a starting point for the discovery of inhibitors against other oncogenic KRAS mutants.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Genes ras , Mutación , Neoplasias/genética , Cisteína
16.
Nat Cancer ; 3(7): 821-836, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35883003

RESUMEN

Oncogenic alterations in human epidermal growth factor receptor 2 (HER2) occur in approximately 2% of patients with non-small cell lung cancer and predominantly affect the tyrosine kinase domain and cluster in exon 20 of the ERBB2 gene. Most clinical-grade tyrosine kinase inhibitors are limited by either insufficient selectivity against wild-type (WT) epidermal growth factor receptor (EGFR), which is a major cause of dose-limiting toxicity or by potency against HER2 exon 20 mutant variants. Here we report the discovery of covalent tyrosine kinase inhibitors that potently inhibit HER2 exon 20 mutants while sparing WT EGFR, which reduce tumor cell survival and proliferation in vitro and result in regressions in preclinical xenograft models of HER2 exon 20 mutant non-small cell lung cancer, concomitant with inhibition of downstream HER2 signaling. Our results suggest that HER2 exon 20 insertion-driven tumors can be effectively treated by a potent and highly selective HER2 inhibitor while sparing WT EGFR, paving the way for clinical translation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Receptores ErbB/genética , Exones/genética , Genes erbB-2 , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Receptor ErbB-2/genética
17.
J Med Chem ; 64(22): 16319-16327, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34784474

RESUMEN

At the heart of drug design is the discovery of molecules that bind with high affinity to their drug targets. Biotin forms the strongest known noncovalent ligand-protein interactions with avidin and streptavidin, achieving femtomolar and picomolar affinities, respectively. This is made even more exceptional because biotin achieves this with a meagre molecular weight of 240 Da. Surprisingly, the approaches by which biotin achieves this are not in the standard repertoire of current medicinal chemistry practice. Biotin's biggest lesson is the importance of nonclassical H-bonds in protein-ligand complexes. Most of biotin's affinity stems from its flexible valeric acid side chain that forms CH-π, CH-O, and classical H-bonds with the lipophilic region of the binding pocket. Biotin also utilizes an oxyanion hole, a sulfur-centered H-bond, and water solvation in the bound state to achieve its potency. The facets and advantages of biotin's approach to binding should be more widely adopted in drug design.


Asunto(s)
Biotina/química , Diseño de Fármacos , Sitios de Unión , Enlace de Hidrógeno , Estructura Molecular , Ácidos Pentanoicos/química , Estreptavidina/química
18.
Curr Opin Pharmacol ; 57: 175-183, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33799000

RESUMEN

Small-molecule targeted protein degraders have in recent years made a great impact on the strategies of many industry and academic cancer research endeavours. We seek here to provide a concise perspective on the opportunities and challenges that lie ahead for bifunctional degrader molecules, so-called 'Proteolysis Targeting Chimeras (PROTACs),' in the context of cancer therapy. We highlight high-profile studies that support the potential for PROTAC approaches to broaden drug target scope, address drug resistance, enhance target selectivity and provide tissue specificity, but also assess where the modality is yet to fully deliver in these contexts. Future opportunities presented by the unique bifunctional nature of these molecules are also discussed.


Asunto(s)
Reactivos de Enlaces Cruzados , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Proteolisis , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/farmacología
19.
Curr Opin Chem Biol ; 62: 109-118, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33848766

RESUMEN

Son of Sevenless (SOS) is a guanine nucleotide exchange factor that activates the important cell signaling switch KRAS. SOS acts as a pacemaker for KRAS, the beating heart of cancer, by catalyzing the "beating" from the KRAS(off) to the KRAS(on) conformation. Activating mutations in SOS1 are common in Noonan syndrome and oncogenic alterations in KRAS drive 1 in seven human cancers. Promising clinical efficacy has been observed for selective KRASG12C inhibitors, but the vast majority of oncogenic KRAS alterations remain undrugged. The discovery of a druggable pocket on SOS1 has led to potent SOS1 inhibitors such as BI-3406. SOS1 inhibition leads to antiproliferative effects against all major KRAS mutants. The first SOS1 inhibitor has entered clinical trials for KRAS-mutated cancers. In this review, we provide an overview of SOS1 function, its association with cancer and RASopathies, known SOS1 activators and inhibitors, and a future perspective is provided.


Asunto(s)
Antineoplásicos/química , Proteínas Mutantes/química , Neoplasias/terapia , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína SOS1/antagonistas & inhibidores , Acetonitrilos/farmacología , Antineoplásicos/farmacología , Regulación de la Expresión Génica , Humanos , Mutación , Marcapaso Artificial , Piperazinas/farmacología , Conformación Proteica , Piridinas/farmacología , Pirimidinas/farmacología , Proteína SOS1/metabolismo , Transducción de Señal , Relación Estructura-Actividad
20.
Curr Opin Struct Biol ; 71: 136-147, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34303932

RESUMEN

It has taken four decades of research to see the first major breakthrough for KRAS-driven cancers. In particular, the last decade has seen a paradigm shift with the discovery of druggable pockets on KRAS and clinical efficacy with covalent KRASG12C inhibitors, culminating in the first approval of sotorasib monotherapy as second-line treatment in KRASG12C-driven non-small-cell lung cancer. Nevertheless, 85% of all KRAS-mutated cancers still lack novel agents. In this review, we will outline the structure, function, and post-translational modifications of KRAS and highlight the various approaches being adopted to drug KRAS, ranging from selective to pan concepts. The range of molecular modalities being explored, including PROTACs and glues, will also be described. Finally, an outlook toward the next wave of KRAS drugs and the challenges of resistance will be given.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA