Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 160: 247-255, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29031214

RESUMEN

Oxidative potential (OP) of particulate matter (PM) is proposed as a biologically-relevant exposure metric for studies of air pollution and health. We aimed to evaluate the spatial variability of the OP of measured PM2.5 using ascorbate (AA) and (reduced) glutathione (GSH), and develop land use regression (LUR) models to explain this spatial variability. We estimated annual average values (m-3) of OPAA and OPGSH for five areas (Basel, CH; Catalonia, ES; London-Oxford, UK (no OPGSH); the Netherlands; and Turin, IT) using PM2.5 filters. OPAA and OPGSH LUR models were developed using all monitoring sites, separately for each area and combined-areas. The same variables were then used in repeated sub-sampling of monitoring sites to test sensitivity of variable selection; new variables were offered where variables were excluded (p > .1). On average, measurements of OPAA and OPGSH were moderately correlated (maximum Pearson's maximum Pearson's R = = .7) with PM2.5 and other metrics (PM2.5absorbance, NO2, Cu, Fe). HOV (hold-out validation) R2 for OPAA models was .21, .58, .45, .53, and .13 for Basel, Catalonia, London-Oxford, the Netherlands and Turin respectively. For OPGSH, the only model achieving at least moderate performance was for the Netherlands (R2 = .31). Combined models for OPAA and OPGSH were largely explained by study area with weak local predictors of intra-area contrasts; we therefore do not endorse them for use in epidemiologic studies. Given the moderate correlation of OPAA with other pollutants, the three reasonably performing LUR models for OPAA could be used independently of other pollutant metrics in epidemiological studies.


Asunto(s)
Monitoreo del Ambiente , Modelos Teóricos , Material Particulado/análisis , Ambiente , Europa (Continente) , Oxidación-Reducción , Análisis de Regresión
2.
Environ Int ; 113: 10-19, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29421397

RESUMEN

We established air pollution modelling to study particle (PM10) exposures during pregnancy and infancy (1990-1993) through childhood and adolescence up to age ~15 years (1991-2008) for the Avon Longitudinal Study of Parents And Children (ALSPAC) birth cohort. For pregnancy trimesters and infancy (birth to 6 months; 7 to 12 months) we used local (ADMS-Urban) and regional/long-range (NAME-III) air pollution models, with a model constant for local, non-anthropogenic sources. For longer exposure periods (annually and the average of birth to age ~8 and to age ~15 years to coincide with relevant follow-up clinics) we assessed spatial contrasts in local sources of PM10 with a yearly-varying concentration for all background sources. We modelled PM10 (µg/m3) for 36,986 address locations over 19 years and then accounted for changes in address in calculating exposures for different periods: trimesters/infancy (n = 11,929); each year of life to age ~15 (n = 10,383). Intra-subject exposure contrasts were largest between pregnancy trimesters (5th to 95th centile: 24.4-37.3 µg/m3) and mostly related to temporal variability in regional/long-range PM10. PM10 exposures fell on average by 11.6 µg/m3 from first year of life (mean concentration = 31.2 µg/m3) to age ~15 (mean = 19.6 µg/m3), and 5.4 µg/m3 between follow-up clinics (age ~8 to age ~15). Spatial contrasts in 8-year average PM10 exposures (5th to 95th centile) were relatively low: 25.4-30.0 µg/m3 to age ~8 years and 20.7-23.9 µg/m3 from age ~8 to age ~15 years. The contribution of local sources to total PM10 was 18.5%-19.5% during pregnancy and infancy, and 14.4%-17.0% for periods leading up to follow-up clinics. Main roads within the study area contributed on average ~3.0% to total PM10 exposures in all periods; 9.5% of address locations were within 50 m of a main road. Exposure estimates will be used in a number of planned epidemiological studies.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Material Particulado/análisis , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Estudios Longitudinales , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA