Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38928298

RESUMEN

Pericytes are multipotent cells embedded within the vascular system, primarily surrounding capillaries and microvessels where they closely interact with endothelial cells. These cells are known for their intriguing properties due to their heterogeneity in tissue distribution, origin, and multifunctional capabilities. Specifically, pericytes are essential in regulating blood flow, promoting angiogenesis, and supporting tissue homeostasis and regeneration. These multifaceted roles draw on pericytes' remarkable ability to respond to biochemical cues, interact with neighboring cells, and adapt to changing environmental conditions. This review aims to summarize existing knowledge on pericytes, emphasizing their versatility and involvement in vascular integrity and tissue health. In particular, a comprehensive view of the major signaling pathways, such as PDGFß/ PDGFRß, TGF-ß, FOXO and VEGF, along with their downstream targets, which coordinate the behavior of pericytes in preserving vascular integrity and promoting tissue regeneration, will be discussed. In this light, a deeper understanding of the complex signaling networks defining the phenotype of pericytes in healthy tissues is crucial for the development of targeted therapies in vascular and degenerative diseases.


Asunto(s)
Homeostasis , Pericitos , Transducción de Señal , Pericitos/metabolismo , Pericitos/fisiología , Humanos , Animales , Neovascularización Fisiológica , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo
2.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36769284

RESUMEN

The Hedgehog (HH) signaling network is one of the main regulators of invertebrate and vertebrate embryonic development. Along with other networks, such as NOTCH and WNT, HH signaling specifies both the early patterning and the polarity events as well as the subsequent organ formation via the temporal and spatial regulation of cell proliferation and differentiation. However, aberrant activation of HH signaling has been identified in a broad range of malignant disorders, where it positively influences proliferation, survival, and therapeutic resistance of neoplastic cells. Inhibitors targeting the HH pathway have been tested in preclinical cancer models. The HH pathway is also overactive in other blood malignancies, including T-cell acute lymphoblastic leukemia (T-ALL). This review is intended to summarize our knowledge of the biological roles and pathophysiology of the HH pathway during normal T-cell lymphopoiesis and in T-ALL. In addition, we will discuss potential therapeutic strategies that might expand the clinical usefulness of drugs targeting the HH pathway in T-ALL.


Asunto(s)
Proteínas Hedgehog , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Proteínas Hedgehog/metabolismo , Linfopoyesis , Linfocitos T/metabolismo , Transducción de Señal/fisiología
3.
FASEB J ; 34(11): 15400-15416, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32959428

RESUMEN

MDS are characterized by anemia and transfusion requirements. Transfused patients frequently show iron overload that negatively affects hematopoiesis. Iron chelation therapy can be effective in these MDS cases, but the molecular consequences of this treatment need to be further investigated. That is why we studied the molecular features of iron effect and Deferasirox therapy on PI-PLCbeta1 inositide signaling, using hematopoietic cells and MDS samples. At baseline, MDS patients showing a positive response after iron chelation therapy displayed higher levels of PI-PLCbeta1/Cyclin D3/PKCalpha expression. During treatment, these responder patients, as well as hematopoietic cells treated with FeCl3 and Deferasirox, showed a specific reduction of PI-PLCbeta1/Cyclin D3/PKCalpha expression, indicating that this signaling pathway is targeted by Deferasirox. The treatment was also able to specifically decrease the production of ROS. This effect correlated with a reduction of IL-1A and IL-2, as well as Akt/mTOR phosphorylation. In contrast, cells exposed only to FeCl3 and cells from MDS patients refractory to Deferasirox showed a specific increase of ROS and PI-PLCbeta1/Cyclin D3/PKCalpha expression. All in all, our data show that PI-PLCbeta1 signaling is a target for iron-induced oxidative stress and suggest that baseline PI-PLCbeta1 quantification could predict iron chelation therapy response in MDS.


Asunto(s)
Ciclina D3/metabolismo , Sobrecarga de Hierro/complicaciones , Hierro/efectos adversos , Síndromes Mielodisplásicos/terapia , Estrés Oxidativo/efectos de los fármacos , Fosfolipasa C beta/metabolismo , Proteína Quinasa C-alfa/metabolismo , Anciano , Transfusión Sanguínea/estadística & datos numéricos , Ciclina D3/genética , Deferasirox/farmacología , Femenino , Regulación de la Expresión Génica , Humanos , Quelantes del Hierro/farmacología , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/patología , Fosfolipasa C beta/genética , Fosforilación , Proteína Quinasa C-alfa/genética , Transducción de Señal
4.
Handb Exp Pharmacol ; 259: 291-308, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31889219

RESUMEN

Nuclear inositides have a specific subcellular distribution that is linked to specific functions; thus their regulation is fundamental both in health and disease. Emerging evidence shows that alterations in multiple inositide signalling pathways are involved in pathophysiology, not only in cancer but also in other diseases. Here, we give an overview of the main features of inositides in the cell, and we discuss their potential as new molecular therapeutic targets.


Asunto(s)
Núcleo Celular , Fosfatidilinositoles/fisiología , Transducción de Señal , Humanos
5.
Int J Mol Sci ; 21(15)2020 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-32722576

RESUMEN

An increasing number of reports suggests a significant involvement of the phosphoinositide (PI) cycle in cancer development and progression. Diacylglycerol kinases (DGKs) are very active in the PI cycle. They are a family of ten members that convert diacylglycerol (DAG) into phosphatidic acid (PA), two-second messengers with versatile cellular functions. Notably, some DGK isoforms, such as DGKα, have been reported to possess promising therapeutic potential in cancer therapy. However, further studies are needed in order to better comprehend their involvement in cancer. In this review, we highlight that DGKs are an essential component of the PI cycle that localize within several subcellular compartments, including the nucleus and plasma membrane, together with their PI substrates and that they are involved in mediating major cancer cell mechanisms such as growth and metastasis. DGKs control cancer cell survival, proliferation, and angiogenesis by regulating Akt/mTOR and MAPK/ERK pathways. In addition, some DGKs control cancer cell migration by regulating the activities of the Rho GTPases Rac1 and RhoA.


Asunto(s)
Movimiento Celular , Diacilglicerol Quinasa/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimología , Animales , Diglicéridos/metabolismo , Humanos , Neoplasias/patología
6.
J Lipid Res ; 60(2): 312-317, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30287524

RESUMEN

Phosphoinositide-specific phospholipases C (PI-PLCs) are involved in signaling pathways related to critical cellular functions, such as cell cycle regulation, cell differentiation, and gene expression. Nuclear PI-PLCs have been studied as key enzymes, molecular targets, and clinical prognostic/diagnostic factors in many physiopathologic processes. Here, we summarize the main studies about nuclear PI-PLCs, specifically, the imbalance of isozymes such as PI-PLCß1 and PI-PLCζ, in cerebral, hematologic, neuromuscular, and fertility disorders. PI-PLCß1 and PI-PLCÉ£1 affect epilepsy, depression, and bipolar disorder. In the brain, PI-PLCß1 is involved in endocannabinoid neuronal excitability and is a potentially novel signature gene for subtypes of high-grade glioma. An altered quality or quantity of PI-PLCζ contributes to sperm defects that result in infertility, and PI-PLCß1 aberrant inositide signaling contributes to both hematologic and degenerative muscle diseases. Understanding the mechanisms behind PI-PLC involvement in human pathologies may help identify new strategies for personalized therapies of these conditions.


Asunto(s)
Encefalopatías/enzimología , Núcleo Celular/enzimología , Enfermedades Hematológicas/enzimología , Infertilidad/enzimología , Enfermedades Neuromusculares/enzimología , Fosfolipasas de Tipo C/metabolismo , Animales , Encefalopatías/patología , Enfermedades Hematológicas/patología , Humanos , Infertilidad/patología , Isoenzimas/metabolismo , Enfermedades Neuromusculares/patología
7.
Int J Cancer ; 144(10): 2613-2624, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30488605

RESUMEN

Hepatocellular carcinoma (HCC) is a highly malignant tumor that responds very poorly to existing therapies, most probably due to its extraordinary inter- and intra-tumor molecular heterogeneity. The modest therapeutic response to molecular targeted agents underlines the need for new therapeutic approaches for HCC. In our study, we took advantage of well-characterized human HCC cell lines, differing in transcriptomic subtypes, DNA mutation and amplification alterations, reflecting the heterogeneity of primary HCCs, to provide a preclinical evaluation of the specific heat shock protein 90 (HSP90) inhibitor AUY922 (luminespib). Indeed, HSP90 is highly expressed in different tumor types, but its role in hepatocarcinogenesis remains unclear. Here, we analyzed HSP90 expression in primary human HCC tissues and evaluated the antitumor effects of AUY922 in vitro as well as in vivo. HSP90 expression was significantly higher in HCC tissues than in cirrhotic peritumoral liver tissues. AUY922 treatment reduced the cell proliferation and viability of HCC cells in a dose-dependent manner, but did not do so for normal human primary hepatocytes. AUY922 treatment led to the upregulation of HSP70 and the simultaneous depletion of HSP90 client proteins. In addition, in a cell type-dependent manner, treatment induced either both caspase-dependent ß-catenin cleavage and the upregulation of p53, or Mcl-1 expression, or NUPR1 expression, which contributed to the increased efficacy of, or resistance to, treatment. Finally, in vivo AUY922 inhibited tumor growth in a xenograft model. In conclusion, HSP90 is a promising therapeutic target in HCC, and AUY922 could be a drug candidate for its treatment.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Proteínas HSP90 de Choque Térmico/metabolismo , Isoxazoles/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Resorcinoles/uso terapéutico , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Animales , Carcinoma Hepatocelular/metabolismo , Caspasas/metabolismo , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Ratones Desnudos , Persona de Mediana Edad , Mutación/genética , Transcriptoma/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , beta Catenina/metabolismo
8.
FASEB J ; 32(2): 681-692, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28970249

RESUMEN

PI-PLCß1 is involved in cell proliferation, differentiation, and myelodysplastic syndrome (MDS) pathogenesis. Moreover, the increased activity of PI-PLCß1 reduces the expression of PKC-α, which, in turn, delays the cell proliferation and is linked to erythropoiesis. Lenalidomide is currently used in low-risk patients with MDS and del(5q), where it can suppress the del(5q) clone and restore normal erythropoiesis. In this study, we analyzed the effect of lenalidomide on 16 patients with low-risk del(5q) MDS, as well as del(5q) and non-del(5q) hematopoietic cell lines, mainly focusing on erythropoiesis, cell cycle, and PI-PLCß1/PKC-α signaling. Overall, 11 patients were evaluated clinically, and 10 (90%) had favorable responses; the remaining case had a stable disease. At a molecular level, both responder patients and del(5q) cells showed a specific induction of erythropoiesis, with a reduced γ/ß-globin ratio, an increase in glycophorin A, and a nuclear translocation of PKC-α. Moreover, lenalidomide could induce a selective G0/G1 arrest of the cell cycle in del(5q) cells, slowing down the rate proliferation in those cells. Altogether, our results could not only better explain the role of PI-PLCß1/PKC-α signaling in erythropoiesis but also lead to a better comprehension of the lenalidomide effect on del(5q) MDS and pave the way to innovative, targeted therapies.-Poli, A., Ratti, S., Finelli, C., Mongiorgi, S., Clissa, C., Lonetti, A., Cappellini, A., Catozzi, A., Barraco, M., Suh, P.-G., Manzoli, L., McCubrey, J. A., Cocco, L., Follo, M. Y. Nuclear translocation of PKC-α is associated with cell cycle arrest and erythroid differentiation in myelodysplastic syndromes (MDSs).


Asunto(s)
Diferenciación Celular , Núcleo Celular/enzimología , Células Eritroides/enzimología , Eritropoyesis , Puntos de Control de la Fase G1 del Ciclo Celular , Síndromes Mielodisplásicos/enzimología , Proteína Quinasa C-alfa/metabolismo , Transducción de Señal , Transporte Activo de Núcleo Celular , Anciano , Anciano de 80 o más Años , Línea Celular , Núcleo Celular/genética , Núcleo Celular/patología , Células Eritroides/patología , Femenino , Humanos , Masculino , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Proteína Quinasa C-alfa/genética , Fase de Descanso del Ciclo Celular
9.
J Cell Physiol ; 233(10): 6440-6454, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29667769

RESUMEN

Despite considerable progress in treatment protocols, B-lineage acute lymphoblastic leukemia (B-ALL) displays a poor prognosis in about 15-20% of pediatric cases and about 60% of adult patients. In addition, life-long irreversible late effects from chemo- and radiation therapy, including secondary malignancies, are a growing problem for leukemia survivors. Targeted therapy holds promising perspectives for cancer treatment as it may be more effective and have fewer side effects than conventional therapies. The phosphatidylinositol 3-phosphate kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathway is a key regulatory cascade which controls proliferation, survival and drug-resistance of cancer cells, and it is frequently upregulated in the different subtypes of B-ALL, where it plays important roles in the pathophysiology, maintenance and progression of the disease. Moreover, activation of this signaling cascade portends a poorer prognosis in both pediatric and adult B-ALL patients. Promising preclinical data on PI3K/Akt/mTOR inhibitors have documented their anticancer activity in B-ALL and some of these novel drugs have entered clinical trials as they could lead to a longer event-free survival and reduce therapy-associated toxicity for patients with B-ALL. This review highlights the current status of PI3K/Akt/mTOR inhibitors in B-ALL, with an emphasis on emerging evidence of the superior efficacy of synergistic combinations involving the use of traditional chemotherapeutics or other novel, targeted agents.


Asunto(s)
Fosfatidilinositol 3-Quinasa/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/genética , Linfocitos B/patología , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Humanos , Terapia Molecular Dirigida , Inhibidores de las Quinasa Fosfoinosítidos-3 , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
10.
Clin Sci (Lond) ; 132(5): 543-568, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29523752

RESUMEN

Mechanistic target of rapamycin (mTOR) is the kinase subunit of two structurally and functionally distinct large multiprotein complexes, referred to as mTOR complex 1 (mTORC1) and mTORC2. mTORC1 and mTORC2 play key physiological roles as they control anabolic and catabolic processes in response to external cues in a variety of tissues and organs. However, mTORC1 and mTORC2 activities are deregulated in widespread human diseases, including cancer. Cancer cells take advantage of mTOR oncogenic signaling to drive their proliferation, survival, metabolic transformation, and metastatic potential. Therefore, mTOR lends itself very well as a therapeutic target for innovative cancer treatment. mTOR was initially identified as the target of the antibiotic rapamycin that displayed remarkable antitumor activity in vitro Promising preclinical studies using rapamycin and its derivatives (rapalogs) demonstrated efficacy in many human cancer types, hence supporting the launch of numerous clinical trials aimed to evaluate the real effectiveness of mTOR-targeted therapies. However, rapamycin and rapalogs have shown very limited activity in most clinical contexts, also when combined with other drugs. Thus, novel classes of mTOR inhibitors with a stronger antineoplastic potency have been developed. Nevertheless, emerging clinical data suggest that also these novel mTOR-targeting drugs may have a weak antitumor activity. Here, we summarize the current status of available mTOR inhibitors and highlight the most relevant results from both preclinical and clinical studies that have provided valuable insights into both their efficacy and failure.


Asunto(s)
Descubrimiento de Drogas/métodos , Terapia Molecular Dirigida/métodos , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Antibióticos Antineoplásicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR/metabolismo
11.
Int J Mol Sci ; 19(7)2018 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-29949919

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood malignancy that arises from the clonal expansion of transformed T-cell precursors. Although T-ALL prognosis has significantly improved due to the development of intensive chemotherapeutic protocols, primary drug-resistant and relapsed patients still display a dismal outcome. In addition, lifelong irreversible late effects from conventional therapy are a growing problem for leukemia survivors. Therefore, novel targeted therapies are required to improve the prognosis of high-risk patients. The mechanistic target of rapamycin (mTOR) is the kinase subunit of two structurally and functionally distinct multiprotein complexes, which are referred to as mTOR complex 1 (mTORC1) and mTORC2. These two complexes regulate a variety of physiological cellular processes including protein, lipid, and nucleotide synthesis, as well as autophagy in response to external cues. However, mTOR activity is frequently deregulated in cancer, where it plays a key oncogenetic role driving tumor cell proliferation, survival, metabolic transformation, and metastatic potential. Promising preclinical studies using mTOR inhibitors have demonstrated efficacy in many human cancer types, including T-ALL. Here, we highlight our current knowledge of mTOR signaling and inhibitors in T-ALL, with an emphasis on emerging evidence of the superior efficacy of combinations consisting of mTOR inhibitors and either traditional or targeted therapeutics.


Asunto(s)
Terapia Molecular Dirigida , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Ensayos Clínicos como Asunto , Humanos , Modelos Biológicos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Transducción de Señal , Serina-Treonina Quinasas TOR/química , Serina-Treonina Quinasas TOR/metabolismo
12.
Biochim Biophys Acta ; 1863(3): 483-489, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26381542

RESUMEN

Non-Hodgkin lymphomas (NHL) are a heterogeneous group of lymphoproliferative malignancies with variable patterns of behavior and responses to therapy. NHL development and invasion depend on multiple interactions between tumor cells and non-neoplastic cells. Such interactions are usually modulated by several cytokines. Accordingly, it was demonstrated that matrix-metalloproteinase (MMP)-2 and MMP-9 were activated in human lymphoid cell lines by interleukin-6 (IL-6). The activation of these enzymes is associated with tumor invasion and metastasis in human cancers. MMPs are also activated in several cancers by osteopontin (OPN), a secreted glycoprotein that regulates cell adhesion, migration, and survival. However, it is still unclear if MMPs play a role in NHL development and if their activation is determined by OPN and/or IL-6. In the present study, two groups of 78 NHL patients and 95 healthy donors were recruited for the analysis of OPN, MMP-2, MMP-9 and IL-6.Significant higher circulating levels of MMP-2, MMP-9, OPN and IL-6 were observed in NHL patients when compared to healthy donors. Similar data were obtained by analyzing the activity of both MMP-2 and MMP-9. The multivariate regression model indicates that, in both NHL cases and healthy donors, OPN is associated with the increase of MMP-2 and MMP-9 levels independently of IL-6. These data were first confirmed by "in silico" analyses and then by "in vitro" experiments conducted on peripheral blood mononuclear cells randomly selected from both NHL patients and healthy donors.Overall, our data suggest that the activation of MMPs in NHL development is mostly associated with OPN. However, IL-6 may play an important role in the lymphomagenesis through the activation of other molecular pathways. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.


Asunto(s)
Interleucina-6/sangre , Linfoma de Células B Grandes Difuso/sangre , Metaloproteinasa 2 de la Matriz/sangre , Metaloproteinasa 9 de la Matriz/sangre , Osteopontina/sangre , Microambiente Tumoral , Células Cultivadas , Activación Enzimática , Ensayo de Inmunoadsorción Enzimática , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Leucocitos Mononucleares/metabolismo , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Masculino , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Persona de Mediana Edad , Análisis Multivariante , Osteopontina/genética , Osteopontina/metabolismo , Análisis de Regresión
13.
Biochim Biophys Acta ; 1863(3): 449-463, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26334291

RESUMEN

The bone marrow (BM) microenvironment regulates the properties of healthy hematopoietic stem cells (HSCs) localized in specific niches. Two distinct microenvironmental niches have been identified in the BM, the "osteoblastic (endosteal)" and "vascular" niches. Nevertheless, these niches provide sanctuaries where subsets of leukemic cells escape chemotherapy-induced death and acquire a drug-resistant phenotype. Moreover, it is emerging that leukemia cells are able to remodel the BM niches into malignant niches which better support neoplastic cell survival and proliferation. This review focuses on the cellular and molecular biology of microenvironment/leukemia interactions in acute lymphoblastic leukemia (ALL) of both B- and T-cell lineage. We shall also highlight the emerging role of exosomes/microvesicles as efficient messengers for cell-to-cell communication in leukemia settings. Studies on the interactions between the BM microenvironment and ALL cells have led to the discovery of potential therapeutic targets which include cytokines/chemokines and their receptors, adhesion molecules, signal transduction pathways, and hypoxia-related proteins. The complex interplays between leukemic cells and BM microenvironment components provide a rationale for innovative, molecularly targeted therapies, designed to improve ALL patient outcome. A better understanding of the contribution of the BM microenvironment to the process of leukemogenesis and leukemia persistence after initial remission, may provide new targets that will allow destruction of leukemia cells without adversely affecting healthy HSCs. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis,Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.


Asunto(s)
Médula Ósea/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Nicho de Células Madre , Microambiente Tumoral , Antineoplásicos/uso terapéutico , Médula Ósea/efectos de los fármacos , Médula Ósea/metabolismo , Moléculas de Adhesión Celular/metabolismo , Quimiocinas/metabolismo , Humanos , Modelos Biológicos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Transducción de Señal/efectos de los fármacos
14.
Biochim Biophys Acta ; 1863(3): 438-448, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26278055

RESUMEN

Various, diverse molecules contribute to the tumor microenvironment and influence invasion and metastasis. In this review, the roles of neutrophil gelatinase-associated lipocalin (NGAL) and matrix metalloproteinase-9 (MMP-9) in the tumor microenvironment and sensitivity to therapy will be discussed. The lipocalin family of proteins has many important functions. For example when NGAL forms a complex with MMP-9 it increases its stability which is important in cancer metastasis. Small hydrophobic molecules are bound by NGAL which can alter their entry into and efflux from cells. Iron transport and storage are also influenced by NGAL activity. Regulation of iron levels is important for survival in the tumor microenvironment as well as metastasis. Innate immunity is also regulated by NGAL as it can have bacteriostatic properties. NGAL and MMP-9 expression may also affect the sensitivity of cancer cells to chemotherapy as well as targeted therapy. Thus NGAL and MMP-9 play important roles in key processes involved in metastasis as well as response to therapy. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Lipocalinas/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Microambiente Tumoral , Antineoplásicos/uso terapéutico , Humanos , Lipocalina 2 , Modelos Biológicos , Metástasis de la Neoplasia , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Unión Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
15.
Biochim Biophys Acta ; 1863(12): 2942-2976, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27612668

RESUMEN

Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that participates in an array of critical cellular processes. GSK-3 was first characterized as an enzyme that phosphorylated and inactivated glycogen synthase. However, subsequent studies have revealed that this moon-lighting protein is involved in numerous signaling pathways that regulate not only metabolism but also have roles in: apoptosis, cell cycle progression, cell renewal, differentiation, embryogenesis, migration, regulation of gene transcription, stem cell biology and survival. In this review, we will discuss the roles that GSK-3 plays in various diseases as well as how this pivotal kinase interacts with multiple signaling pathways such as: PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK, Wnt/beta-catenin, hedgehog, Notch and TP53. Mutations that occur in these and other pathways can alter the effects that natural GSK-3 activity has on regulating these signaling circuits that can lead to cancer as well as other diseases. The novel roles that microRNAs play in regulation of the effects of GSK-3 will also be evaluated. Targeting GSK-3 and these other pathways may improve therapy and overcome therapeutic resistance.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Glucógeno Sintasa Quinasa 3/genética , MicroARNs/genética , Mutación , Neoplasias/genética , Animales , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , MicroARNs/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
16.
J Cell Biochem ; 118(8): 1969-1978, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28106288

RESUMEN

The existence of an independent nuclear inositide pathway distinct from the cytoplasmic one has been demonstrated in different physiological systems and in diseases. In this prospect we analyze the role of PI-PLCß1 nuclear isoform in relation to the cell cycle regulation, the cell differentiation, and different physiopathological pathways focusing on the importance of the nuclear localization from both molecular and clinical point of view. PI-PLCß1 is essential for G1/S transition through DAG and Cyclin D3 and plays also a central role in G2/M progression through Cyclin B1 and PKCα. In the differentiation process of C2C12 cells PI-PLCß1 increases in both myogenic differentiation and osteogenic differentiation. PI-PLCß1 and Cyclin D3 reduction has been observed in Myotonic Dystrophy (DM) suggesting a pivotal role of these enzymes in DM physiopathology. PI-PLCß1 is also involved in adipogenesis through a double phase mechanism. Moreover, PI-PLCß1 plays a key role in the normal hematopoietic differentiation where it seems to decrease in erythroid differentiation and increase in myeloid differentiation. In Myelodysplastic Syndromes (MDS) PI-PLCß1 has a genetic and epigenetic relevance and it is related to MDS patients' risk of Acute Myeloid Leukemia (AML) evolution. In MDS patients PI-PLCß1 seems to be also a therapeutic predictive outcome marker. In the central nervous system, PI-PLCß1 seems to be involved in different pathways in both brain cortex development and synaptic plasticity related to different diseases. Another PI-PLC isozyme that could be related to nuclear activities is PI-PLCζ that is involved in infertility processes. J. Cell. Biochem. 118: 1969-1978, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Núcleo Celular/metabolismo , Fosfatos de Inositol/metabolismo , Síndromes Mielodisplásicos/genética , Células Mieloides/metabolismo , Fosfolipasa C beta/genética , Adipocitos/metabolismo , Adipocitos/patología , Animales , Encefalopatías/genética , Encefalopatías/metabolismo , Encefalopatías/patología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Humanos , Infertilidad/genética , Infertilidad/metabolismo , Infertilidad/patología , Células Musculares/metabolismo , Células Musculares/patología , Síndromes Mielodisplásicos/metabolismo , Síndromes Mielodisplásicos/patología , Células Mieloides/patología , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Distrofia Miotónica/patología , Osteoblastos/metabolismo , Osteoblastos/patología , Fosfolipasa C beta/metabolismo , Transducción de Señal
17.
Biochim Biophys Acta ; 1853(1): 14-26, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25284725

RESUMEN

Macroautophagy, usually referred to as autophagy, is a degradative pathway wherein cytoplasmatic components such as aggregated/misfolded proteins and organelles are engulfed within double-membrane vesicles (autophagosomes) and then delivered to lysosomes for degradation. Autophagy plays an important role in the regulation of numerous physiological functions, including hematopoiesis, through elimination of aggregated/misfolded proteins, and damaged/superfluous organelles. The catabolic products of autophagy (amino acids, fatty acids, nucleotides) are released into the cytosol from autophagolysosomes and recycled into bio-energetic pathways. Therefore, autophagy allows cells to survive starvation and other unfavorable conditions, including hypoxia, heat shock, and microbial pathogens. Nevertheless, depending upon the cell context and functional status, autophagy can also serve as a death mechanism. The cohort of proteins that constitute the autophagy machinery function in a complex, multistep biochemical pathway which has been partially identified over the past decade. Dysregulation of autophagy may contribute to the development of several disorders, including acute leukemias. In this kind of hematologic malignancies, autophagy can either act as a chemo-resistance mechanism or have tumor suppressive functions, depending on the context. Therefore, strategies exploiting autophagy, either for activating or inhibiting it, could find a broad application for innovative treatment of acute leukemias and could significantly contribute to improved clinical outcomes. These aspects are discussed here after a brief introduction to the autophagic molecular machinery and its roles in hematopoiesis.


Asunto(s)
Autofagia , Leucemia/patología , Enfermedad Aguda , Autofagia/fisiología , Hematopoyesis , Humanos , Leucemia/terapia , Leucemia Mieloide Aguda/patología , Leucemia Promielocítica Aguda/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología
18.
J Cell Physiol ; 231(8): 1645-55, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26626942

RESUMEN

Phosphatidylinositol (PI) metabolism represents the core of a network of signaling pathways which modulate many cellular functions including cell proliferation, cell differentiation, apoptosis, and membrane trafficking. An array of kinases, phosphatases, and lipases acts on PI creating an important number of second messengers involved in different cellular processes. Although, commonly, PI signaling was described to take place at the plasma membrane, many evidences indicated the existence of a PI cycle residing in the nuclear compartment of eukaryotic cells. The discovery of this mechanism shed new light on many nuclear functions, such as gene transcription, DNA modifications, and RNA expression. As these two PI cycles take place independently of one another, understanding how nuclear lipid signaling functions and modulates nuclear output is fundamental in the study of many cellular processes. J. Cell. Physiol. 231: 1645-1655, 2016. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Núcleo Celular/enzimología , Fosfatidilinositoles/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Sistemas de Mensajero Secundario , Fosfolipasas de Tipo C/metabolismo , Animales , Puntos de Control del Ciclo Celular , Diferenciación Celular , Núcleo Celular/patología , Proliferación Celular , Humanos , Hidrólisis , Síndromes Mielodisplásicos/enzimología , Síndromes Mielodisplásicos/patología , Neoplasias/enzimología , Neoplasias/patología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Transcripción Genética
19.
Tumour Biol ; 37(7): 9855-63, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26810191

RESUMEN

Neutrophil gelatinase-associated lipocalin (NGAL), matrix metalloproteinase (MMP)-9, and NGAL/MMP-9 complex have been evaluated as diagnostic markers of several cancers, but results for bladder cancer are scanty. We evaluated these proteins in urine and serum of 89 patients with histologically confirmed bladder cancer and 119 cancer-free controls from a case-control study. Urinary concentrations were standardized on creatinine level. The performance of these proteins as cancer biomarkers was evaluated through the receiver operating characteristic (ROC) analysis. Urinary level of NGAL, MMP-9, and NGAL/MMP-9 complex was higher in current smokers, whereas no impact of dietary habits was observed. After adjusting for tobacco smoking, urinary concentration of MMP-9 was independently associated with cancer invasiveness, grading, and histological subtype, with elevated concentrations among T2-T4 and non-papillary bladder cancers. Conversely, NGAL and NGAL/MMP-9 complex were significantly higher in non-papillary than in papillary subtype. The pattern was less clear in serum, but correlation between urinary and serum concentration was poor, especially for Ta/is-T1 tumors. The ROC analysis confirmed that MMP-9 was the best marker (area under the ROC curve (AUC) = 0.68). Performances were much greater for muscle-invasive bladder cancers (AUC = 0.90), with elevated negative predictive values (97 %). The present study suggests that NGAL/MMP-9 pathway is associated with an aggressive phenotype of bladder cancer. The elevated negative predictive value of MMP-9 and NGAL/MMP-9 complex makes them candidate markers of exclusion test for bladder cancer. These proteins may be integrated in the surveillance of bladder cancer, thus diminishing patients' discomfort and improving compliance.


Asunto(s)
Biomarcadores de Tumor/orina , Carcinoma Papilar/diagnóstico , Carcinoma de Células Transicionales/diagnóstico , Lipocalina 2/orina , Metaloproteinasa 9 de la Matriz/orina , Neoplasias de la Vejiga Urinaria/diagnóstico , Adolescente , Adulto , Anciano , Carcinoma Papilar/enzimología , Carcinoma Papilar/orina , Carcinoma de Células Transicionales/enzimología , Carcinoma de Células Transicionales/orina , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Invasividad Neoplásica , Estadificación de Neoplasias , Pronóstico , Neoplasias de la Vejiga Urinaria/enzimología , Neoplasias de la Vejiga Urinaria/orina , Adulto Joven
20.
Br J Clin Pharmacol ; 82(5): 1189-1212, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27059645

RESUMEN

Rapamycin and modified rapamycins (rapalogs) have been used to prevent allograft rejection after organ transplant for over 15 years. The mechanistic target of rapamycin (mTOR) has been determined to be a key component of the mTORC1 complex which consists of the serine/threonine kinase TOR and at least five other proteins which are involved in regulating its activity. Some of the best characterized substrates of mTORC1 are proteins which are key kinases involved in the regulation of cell growth (e.g., p70S6K) and protein translation (e.g., 4E-BP1). These proteins may in some cases serve as indicators to sensitivity to rapamycin-related therapies. Dysregulation of mTORC1 activity frequently occurs due to mutations at, or amplifications of, upstream growth factor receptors (e.g., human epidermal growth factor receptor-2, HER2) as well as kinases (e.g., PI3K) and phosphatases (e.g., PTEN) critical in the regulation of cell growth. More recently, it has been shown that certain rapalogs may enhance the effectiveness of hormonal-based therapies for breast cancer patients who have become resistant to endocrine therapy. The combined treatment of certain rapalogs (e.g., everolimus) and aromatase inhibitors (e.g., exemestane) has been approved by the United States Food and Drug Administration (US FDA) and other drug regulatory agencies to treat estrogen receptor positive (ER+) breast cancer patients who have become resistant to hormonal-based therapies and have progressed. This review will summarize recent basic and clinical research in the area and evaluate potential novel therapeutic approaches.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Inhibidores de la Aromatasa/uso terapéutico , Femenino , Humanos , Modelos Biológicos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA