Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
Nano Lett ; 14(5): 2569-77, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24689459

RESUMEN

Dealloying is currently used to tailor the morphology and composition of nanoparticles and bulk solids for a variety of applications including catalysis, energy storage, sensing, actuation, supercapacitors, and radiation damage resistant materials. The known morphologies, which evolve on dealloying of nanoparticles, include core-shell, hollow core-shell, and porous nanoparticles. Here we present results examining the fixed voltage dealloying of AgAu alloy particles in the size range of 2-6 and 20-55 nm. High-angle annular dark-field scanning transmission electron microcopy, energy dispersive, and electron energy loss spectroscopy are used to characterize the size, morphology, and composition of the dealloyed nanoparticles. Our results demonstrate that above the potential corresponding to Ag(+)/Ag equilibrium only core-shell structures evolve in the 2-6 nm diameter particles. Dealloying of the 20-55 nm particles results and in the formation of porous structures analogous to the behavior observed for the corresponding bulk alloy. A statistical analysis that includes the composition and particle size distributions characterizing the larger particles demonstrates that the formation of porous nanoparticles occurs at a well-defined thermodynamic critical potential.

3.
Nat Commun ; 15(1): 3328, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637517

RESUMEN

Hypersonic vehicles must withstand extreme conditions during flights that exceed five times the speed of sound. These systems have the potential to facilitate rapid access to space, bolster defense capabilities, and create a new paradigm for transcontinental earth-to-earth travel. However, extreme aerothermal environments create significant challenges for vehicle materials and structures. This work addresses the critical need to develop resilient refractory alloys, composites, and ceramics. We will highlight key design principles for critical vehicle areas such as primary structures, thermal protection, and propulsion systems; the role of theory and computation; and strategies for advancing laboratory-scale materials to manufacturable flight-ready components.

4.
iScience ; 26(6): 106760, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37235059

RESUMEN

Blood flow is a key regulator of atherosclerosis. Disturbed blood flow promotes atherosclerotic plaque development, whereas normal blood flow protects against plaque development. We hypothesized that normal blood flow is also therapeutic, if it were able to be restored within atherosclerotic arteries. Apolipoprotein E-deficient (ApoE-/-) mice were initially instrumented with a blood flow-modifying cuff to induce plaque development and then five weeks later the cuff was removed to allow restoration of normal blood flow. Plaques in decuffed mice exhibited compositional changes that indicated increased stability compared to plaques in mice with the cuff maintained. The therapeutic benefit of decuffing was comparable to atorvastatin and the combination had an additive effect. In addition, decuffing allowed restoration of lumen area, blood velocity, and wall shear stress to near baseline values, indicating restoration of normal blood flow. Our findings demonstrate that the mechanical effects of normal blood flow on atherosclerotic plaques promote stabilization.

5.
J Am Chem Soc ; 134(20): 8633-45, 2012 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-22533802

RESUMEN

We present a comprehensive experimental study of the formation and activity of dealloyed nanoporous Ni/Pt alloy nanoparticles for the cathodic oxygen reduction reaction. By addressing the kinetics of nucleation during solvothermal synthesis we developed a method to control the size and composition of Ni/Pt alloy nanoparticles over a broad range while maintaining an adequate size distribution. Electrochemical dealloying of these size-controlled nanoparticles was used to explore conditions in which hierarchical nanoporosity within nanoparticles can evolve. Our results show that in order to evolve fully formed porosity, particles must have a minimum diameter of ∼15 nm, a result consistent with the surface kinetic processes occurring during dealloying. Nanoporous nanoparticles possess ligaments and voids with diameters of approximately 2 nm, high surface area/mass ratios usually associated with much smaller particles, and a composition consistent with a Pt-skeleton covering a Ni/Pt alloy core. Electrochemical measurements show that the mass activity for the oxygen reduction reaction using carbon-supported nanoporous Ni/Pt nanoparticles is nearly four times that of commercial Pt/C catalyst and even exceeds that of comparable nonporous Pt-skeleton Ni/Pt alloy nanoparticles.

6.
PLoS One ; 16(12): e0260606, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34882722

RESUMEN

Atherosclerosis is a lipid-driven chronic inflammatory disease that leads to the formation of plaques in the inner lining of arteries. Plaques form over a range of phenotypes, the most severe of which is vulnerable to rupture and causes most of the clinically significant events. In this study, we evaluated the efficacy of nanoparticles (NPs) to differentiate between two plaque phenotypes based on accumulation kinetics in a mouse model of atherosclerosis. This model uses a perivascular cuff to induce two regions of disturbed wall shear stress (WSS) on the inner lining of the instrumented artery, low (upstream) and multidirectional (downstream), which, in turn, cause the development of an unstable and stable plaque phenotype, respectively. To evaluate the influence of each WSS condition, in addition to the final plaque phenotype, in determining NP uptake, mice were injected with NPs at intermediate and fully developed stages of plaque growth. The kinetics of artery wall uptake were assessed in vivo using dynamic contrast-enhanced magnetic resonance imaging. At the intermediate stage, there was no difference in NP uptake between the two WSS conditions, although both were different from the control arteries. At the fully-developed stage, however, NP uptake was reduced in plaques induced by low WSS, but not multidirectional WSS. Histological evaluation of plaques induced by low WSS revealed a significant inverse correlation between the presence of smooth muscle cells and NP accumulation, particularly at the plaque-lumen interface, which did not exist with other constituents (lipid and collagen) and was not present in plaques induced by multidirectional WSS. These findings demonstrate that NP accumulation can be used to differentiate between unstable and stable murine atherosclerosis, but accumulation kinetics are not directly influenced by the WSS condition. This tool could be used as a diagnostic to evaluate the efficacy of experimental therapeutics for atherosclerosis.


Asunto(s)
Apolipoproteínas E/genética , Aterosclerosis/diagnóstico por imagen , Ácido Fólico/administración & dosificación , Gadolinio/química , Miocitos del Músculo Liso/química , Placa Aterosclerótica/diagnóstico por imagen , Animales , Aterosclerosis/genética , Velocidad del Flujo Sanguíneo , Medios de Contraste/administración & dosificación , Medios de Contraste/química , Medios de Contraste/farmacocinética , Diagnóstico Diferencial , Modelos Animales de Enfermedad , Femenino , Ácido Fólico/química , Ácido Fólico/farmacocinética , Gadolinio/farmacocinética , Imagen por Resonancia Magnética , Ratones , Ratones Noqueados , Nanopartículas , Placa Aterosclerótica/genética , Resistencia al Corte , Estrés Mecánico
7.
Sci Rep ; 8(1): 6761, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29712970

RESUMEN

One way of expediting materials development is to decrease the need for new experiments by making greater use of published literature. Here, we use data mining and automated image analysis to gather new insights on nanoporous gold (NPG) without conducting additional experiments or simulations. NPG is a three-dimensional porous network that has found applications in catalysis, sensing, and actuation. We assemble and analyze published images from among thousands of publications on NPG. These images allow us to infer a quantitative description of NPG coarsening as a function of time and temperature, including the coarsening exponent and activation energy. They also demonstrate that relative density and ligament size in NPG are not correlated, indicating that these microstructure features are independently tunable. Our investigation leads us to propose improved reporting guidelines that will enhance the utility of future publications in the field of dealloyed materials.

8.
Nat Commun ; 6: 8887, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26582248

RESUMEN

Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Moreover, we deduce scaling laws governing microstructural length scales and dealloying kinetics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA