Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 106(6): 2029-34, 2009 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-19208815

RESUMEN

Rett Syndrome (RTT) is a severe form of X-linked mental retardation caused by mutations in the gene coding for methyl CpG-binding protein 2 (MECP2). Mice deficient in MeCP2 have a range of physiological and neurological abnormalities that mimic the human syndrome. Here we show that systemic treatment of MeCP2 mutant mice with an active peptide fragment of Insulin-like Growth Factor 1 (IGF-1) extends the life span of the mice, improves locomotor function, ameliorates breathing patterns, and reduces irregularity in heart rate. In addition, treatment with IGF-1 peptide increases brain weight of the mutant mice. Multiple measurements support the hypothesis that RTT results from a deficit in synaptic maturation in the brain: MeCP2 mutant mice have sparse dendritic spines and reduced PSD-95 in motor cortex pyramidal neurons, reduced synaptic amplitude in the same neurons, and protracted cortical plasticity in vivo. Treatment with IGF-1 peptide partially restores spine density and synaptic amplitude, increases PSD-95, and stabilizes cortical plasticity to wild-type levels. Our results thus strongly suggest IGF-1 as a candidate for pharmacological treatment of RTT and potentially of other CNS disorders caused by delayed synapse maturation.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/farmacología , Proteína 2 de Unión a Metil-CpG/genética , Síndrome de Rett/tratamiento farmacológico , Potenciales de Acción , Animales , Encéfalo , Modelos Animales de Enfermedad , Frecuencia Cardíaca , Factor I del Crecimiento Similar a la Insulina/uso terapéutico , Ratones , Ratones Mutantes , Actividad Motora , Neuronas , Tamaño de los Órganos , Tasa de Supervivencia , Transmisión Sináptica , Resultado del Tratamiento
2.
Proc Natl Acad Sci U S A ; 105(27): 9409-14, 2008 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-18606990

RESUMEN

The mapping of eye-specific, geniculocortical inputs to primary visual cortex (V1) is highly sensitive to the balance of correlated activity between the two eyes during a restricted postnatal critical period for ocular dominance plasticity. This critical period is likely to have amplified expression of genes and proteins that mediate synaptic plasticity. DNA microarray analysis of transcription in mouse V1 before, during, and after the critical period identified 31 genes that were up-regulated and 22 that were down-regulated during the critical period. The highest-ranked up-regulated gene, cardiac troponin C, codes for a neuronal calcium-binding protein that regulates actin binding and whose expression is activity-dependent and relatively selective for layer-4 star pyramidal neurons. The highest-ranked down-regulated gene, synCAM, also has actin-based function. Actin-binding function, G protein signaling, transcription, and myelination are prominently represented in the critical period transcriptome. Monocular deprivation during the critical period reverses the expression of nearly all critical period genes. The profile of regulated genes suggests that synaptic stability is a principle driver of critical period gene expression and that alteration in visual activity drives homeostatic restoration of stability.


Asunto(s)
Período Crítico Psicológico , Regulación del Desarrollo de la Expresión Génica , Privación Sensorial/fisiología , Sinapsis/genética , Sinapsis/metabolismo , Corteza Visual/metabolismo , Animales , Predominio Ocular/genética , Regulación hacia Abajo/genética , Perfilación de la Expresión Génica , Potenciales Postsinápticos Inhibidores/genética , Ratones , Vaina de Mielina/genética , Neuronas/citología , Neuronas/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Troponina C/genética , Troponina C/metabolismo , Regulación hacia Arriba/genética , Corteza Visual/crecimiento & desarrollo
3.
Nat Neurosci ; 13(4): 450-7, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20228806

RESUMEN

A myriad of mechanisms have been suggested to account for the full richness of visual cortical plasticity. We found that visual cortex lacking Arc is impervious to the effects of deprivation or experience. Using intrinsic signal imaging and chronic visually evoked potential recordings, we found that Arc(-/-) mice did not exhibit depression of deprived-eye responses or a shift in ocular dominance after brief monocular deprivation. Extended deprivation also failed to elicit a shift in ocular dominance or open-eye potentiation. Moreover, Arc(-/-) mice lacked stimulus-selective response potentiation. Although Arc(-/-) mice exhibited normal visual acuity, baseline ocular dominance was abnormal and resembled that observed after dark-rearing. These data suggest that Arc is required for the experience-dependent processes that normally establish and modify synaptic connections in visual cortex.


Asunto(s)
Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/genética , Oscuridad , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Estimulación Luminosa , Privación Sensorial/fisiología , Transmisión Sináptica/genética , Corteza Visual/fisiología , Percepción Visual/fisiología , Animales , Proteínas del Citoesqueleto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/fisiología , Estimulación Luminosa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA