Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(8): 3942-3952, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38350647

RESUMEN

Aqueous film-forming foams (AFFFs) are used in firefighting applications and often contain per- and polyfluoroalkyl substances (PFAS), which can detrimentally impact environmental and biological health. Incineration is a potential disposal method for AFFFs, which may produce secondary PFAS and other air pollutants. We used online chemical ionization mass spectrometry (CIMS) to measure volatile PFAS emissions from incinerating AFFF concentrate solutions. We quantified perfluorinated carboxylic acids (PFCAs) during the incineration of legacy and contemporary AFFFs. These included trifluoroacetic acid, which reached mg m-3 quantities in the incinerator exhaust. These PFCAs likely arose as products of incomplete combustion of AFFF fluorosurfactants with lower peak furnace temperatures yielding higher PFCA concentrations. We also detected other short-chain PFAS, and other novel chemical products in AFFF combustion emissions. The volatile headspace above AFFF solutions contained larger (C ≥ 8), less oxidized PFAS detected by CIMS. We identified neutral PFAS resembling fluorotelomer surfactants (e.g., fluorotelomer sulfonamide alkylbetaines and fluorotelomer thioether amido sulfonates) and fluorotelomer alcohols in contemporary AFFF headspaces. Directly comparing the distinct chemical spaces of AFFF volatile headspace and combustion byproducts as measured by CIMS provides insight toward the chemistry of PFAS during thermal treatment of AFFFs.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Tensoactivos/análisis , Agua , Fluorocarburos/análisis , Ácidos Carboxílicos/análisis , Espectrometría de Masas
2.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37108744

RESUMEN

Environmental extremes, such as drought and flooding, are becoming more common with global warming, resulting in significant crop losses. Understanding the mechanisms underlying the plant water stress response, regulated by the abscisic acid (ABA) pathway, is crucial to building resilience to climate change. Potted kiwifruit plants (two cultivars) were exposed to contrasting watering regimes (water logging and no water). Root and leaf tissues were sampled during the experiments to measure phytohormone levels and expression of ABA pathway genes. ABA increased significantly under drought conditions compared with the control and waterlogged plants. ABA-related gene responses were significantly greater in roots than leaves. ABA responsive genes, DREB2 and WRKY40, showed the greatest upregulation in roots with flooding, and the ABA biosynthesis gene, NCED3, with drought. Two ABA-catabolic genes, CYP707A i and ii were able to differentiate the water stress responses, with upregulation in flooding and downregulation in drought. This study has identified molecular markers and shown that water stress extremes induced strong phytohormone/ABA gene responses in the roots, which are the key site of water stress perception, supporting the theory kiwifruit plants regulate ABA to combat water stress.


Asunto(s)
Ácido Abscísico , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/metabolismo , Deshidratación/metabolismo , Sequías , Estrés Fisiológico/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Hojas de la Planta/metabolismo , Expresión Génica , Regulación de la Expresión Génica de las Plantas
3.
World J Microbiol Biotechnol ; 30(10): 2609-23, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24928258

RESUMEN

Decontamination studies investigating the effectiveness of products and processes for the inactivation of Bacillus species spores have traditionally utilized metering viable spores in a liquid suspension onto test materials (coupons). The current study addresses the representativeness of studies using this type of inoculation method compared to when coupons are dosed with a metered amount of aerosolized spores. The understanding of this comparability is important in order to assess the representativeness of such laboratory-based testing when deciding upon decontamination options for use against Bacillus anthracis spores. Temporal inactivation of B. anthracis surrogate (B. subtilis) spores on representative materials using fumigation with chlorine dioxide, spraying of a pH-adjusted bleach solution, or immersion in the solution was investigated as a function of inoculation method (liquid suspension or aerosol dosing). Results indicated that effectiveness, measured as log reduction, was statistically significantly lower when liquid inoculation was used for some material and decontaminant combinations. Differences were mostly noted for the materials observed to be more difficult to decontaminate (i.e., wood and carpet). Significant differences in measured effectiveness were also noted to be a function of the pH-adjusted bleach application method used in the testing (spray or immersion). Based upon this work and the cited literature, it is clear that inoculation method, decontaminant application method, and handling of non-detects (i.e., or detection limits) can have an impact on the sporicidal efficacy measurements.


Asunto(s)
Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/fisiología , Descontaminación/métodos , Contaminación de Equipos , Aerosoles , Blanqueadores/farmacología , Compuestos de Cloro/farmacología , Desinfectantes/farmacología , Fumigación , Concentración de Iones de Hidrógeno , Óxidos/farmacología , Esporas Bacterianas/efectos de los fármacos
4.
PLoS One ; 16(9): e0257434, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34591869

RESUMEN

Although research has shown that the COVID-19 disease is most likely caused by airborne transmission of the SARS-CoV-2 virus, disinfection of potentially contaminated surfaces is also recommended to limit the spread of the disease. Use of electrostatic sprayers (ESS) and foggers to rapidly apply disinfectants over large areas or to complex surfaces has emerged with the COVID-19 pandemic. ESSs are designed to impart an electrostatic charge to the spray droplets with the goal of increasing deposition of the droplets onto surfaces, thereby promoting more efficient use of the disinfectant. The purpose of this research was to evaluate several spray parameters for different types of sprayers and foggers, as they relate to the application of disinfectants. Some of the parameters evaluated included the spray droplet size distribution, the electrostatic charge, the ability of the spray to wrap around objects, and the loss of disinfectant chemical active ingredient due to the spray process. The results show that most of the devices evaluated for droplet size distribution had an average volume median diameter ≥ 40 microns, and that four out of the six ESS tested for charge/mass produced sprays of at least 0.1 mC/kg. A minimal wrap-around effect of the spray deposition onto a cylindrical object was observed. The loss of disinfectant active ingredient to the air due to spraying was minimal for the two disinfectants tested, and concurrently, the active ingredient concentrations of the liquid disinfectants sprayed and collected 3 feet (1 meter) away from the spray nozzle do not decrease.


Asunto(s)
COVID-19/prevención & control , Desinfectantes/administración & dosificación , Desinfección/instrumentación , Desinfectantes/farmacología , Desinfección/métodos , Diseño de Equipo , Humanos , SARS-CoV-2/efectos de los fármacos , Electricidad Estática , Propiedades de Superficie/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA