Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nature ; 612(7939): 328-337, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36450991

RESUMEN

The precise mechanisms that lead to cognitive decline in Alzheimer's disease are unknown. Here we identify amyloid-plaque-associated axonal spheroids as prominent contributors to neural network dysfunction. Using intravital calcium and voltage imaging, we show that a mouse model of Alzheimer's disease demonstrates severe disruption in long-range axonal connectivity. This disruption is caused by action-potential conduction blockades due to enlarging spheroids acting as electric current sinks in a size-dependent manner. Spheroid growth was associated with an age-dependent accumulation of large endolysosomal vesicles and was mechanistically linked with Pld3-a potential Alzheimer's-disease-associated risk gene1 that encodes a lysosomal protein2,3 that is highly enriched in axonal spheroids. Neuronal overexpression of Pld3 led to endolysosomal vesicle accumulation and spheroid enlargement, which worsened axonal conduction blockades. By contrast, Pld3 deletion reduced endolysosomal vesicle and spheroid size, leading to improved electrical conduction and neural network function. Thus, targeted modulation of endolysosomal biogenesis in neurons could potentially reverse axonal spheroid-induced neural circuit abnormalities in Alzheimer's disease, independent of amyloid removal.


Asunto(s)
Enfermedad de Alzheimer , Axones , Fosfolipasa D , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Axones/metabolismo , Axones/patología , Modelos Animales de Enfermedad , Fosfolipasa D/metabolismo , Esferoides Celulares/metabolismo
2.
PLoS Comput Biol ; 19(10): e1011548, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37824576

RESUMEN

Biophysically detailed simulations of neuronal activity often rely on solving large systems of differential equations; in some models, these systems have tens of thousands of states per cell. Numerically solving these equations is computationally intensive and requires making assumptions about the initial cell states. Additional realism from incorporating more biological detail is achieved at the cost of increasingly more states, more computational resources, and more modeling assumptions. We show that for both a point and morphologically-detailed cell model, the presence and timing of future action potentials is probabilistically well-characterized by the relative timings of a moderate number of recent events alone. Knowledge of initial conditions or full synaptic input history is not required. While model time constants, etc. impact the specifics, we demonstrate that for both individual spikes and sustained cellular activity, the uncertainty in spike response decreases as the number of known input events increases, to the point of approximate determinism. Further, we show cellular model states are reconstructable from ongoing synaptic events, despite unknown initial conditions. We propose that a strictly event-based modeling framework is capable of representing the complexity of cellular dynamics of the differential-equations models with significantly less per-cell state variables, thus offering a pathway toward utilizing modern data-driven modeling to scale up to larger network models while preserving individual cellular biophysics.


Asunto(s)
Modelos Neurológicos , Neuronas , Reproducibilidad de los Resultados , Neuronas/fisiología , Potenciales de Acción/fisiología , Biofisica
3.
Nucleic Acids Res ; 50(W1): W108-W114, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35524558

RESUMEN

Computational models have great potential to accelerate bioscience, bioengineering, and medicine. However, it remains challenging to reproduce and reuse simulations, in part, because the numerous formats and methods for simulating various subsystems and scales remain siloed by different software tools. For example, each tool must be executed through a distinct interface. To help investigators find and use simulation tools, we developed BioSimulators (https://biosimulators.org), a central registry of the capabilities of simulation tools and consistent Python, command-line and containerized interfaces to each version of each tool. The foundation of BioSimulators is standards, such as CellML, SBML, SED-ML and the COMBINE archive format, and validation tools for simulation projects and simulation tools that ensure these standards are used consistently. To help modelers find tools for particular projects, we have also used the registry to develop recommendation services. We anticipate that BioSimulators will help modelers exchange, reproduce, and combine simulations.


Asunto(s)
Simulación por Computador , Programas Informáticos , Humanos , Bioingeniería , Modelos Biológicos , Sistema de Registros , Investigadores
4.
BMC Bioinformatics ; 24(1): 292, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474900

RESUMEN

BACKGROUND: The accelerating pace of biomedical publication has made it impractical to manually, systematically identify papers containing specific information and extract this information. This is especially challenging when the information itself resides beyond titles or abstracts. For emerging science, with a limited set of known papers of interest and an incomplete information model, this is of pressing concern. A timely example in retrospect is the identification of immune signatures (coherent sets of biomarkers) driving differential SARS-CoV-2 infection outcomes. IMPLEMENTATION: We built a classifier to identify papers containing domain-specific information from the document embeddings of the title and abstract. To train this classifier with limited data, we developed an iterative process leveraging pre-trained SPECTER document embeddings, SVM classifiers and web-enabled expert review to iteratively augment the training set. This training set was then used to create a classifier to identify papers containing domain-specific information. Finally, information was extracted from these papers through a semi-automated system that directly solicited the paper authors to respond via a web-based form. RESULTS: We demonstrate a classifier that retrieves papers with human COVID-19 immune signatures with a positive predictive value of 86%. The type of immune signature (e.g., gene expression vs. other types of profiling) was also identified with a positive predictive value of 74%. Semi-automated queries to the corresponding authors of these publications requesting signature information achieved a 31% response rate. CONCLUSIONS: Our results demonstrate the efficacy of using a SVM classifier with document embeddings of the title and abstract, to retrieve papers with domain-specific information, even when that information is rarely present in the abstract. Targeted author engagement based on classifier predictions offers a promising pathway to build a semi-structured representation of such information. Through this approach, partially automated literature mining can help rapidly create semi-structured knowledge repositories for automatic analysis of emerging health threats.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2
5.
J Comput Neurosci ; 42(1): 1-10, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27629590

RESUMEN

Neuron modeling may be said to have originated with the Hodgkin and Huxley action potential model in 1952 and Rall's models of integrative activity of dendrites in 1964. Over the ensuing decades, these approaches have led to a massive development of increasingly accurate and complex data-based models of neurons and neuronal circuits. ModelDB was founded in 1996 to support this new field and enhance the scientific credibility and utility of computational neuroscience models by providing a convenient venue for sharing them. It has grown to include over 1100 published models covering more than 130 research topics. It is actively curated and developed to help researchers discover and understand models of interest. ModelDB also provides mechanisms to assist running models both locally and remotely, and has a graphical tool that enables users to explore the anatomical and biophysical properties that are represented in a model. Each of its capabilities is undergoing continued refinement and improvement in response to user experience. Large research groups (Allen Brain Institute, EU Human Brain Project, etc.) are emerging that collect data across multiple scales and integrate that data into many complex models, presenting new challenges of scale. We end by predicting a future for neuroscience increasingly fueled by new technology and high performance computation, and increasingly in need of comprehensive user-friendly databases such as ModelDB to provide the means to integrate the data for deeper insights into brain function in health and disease.


Asunto(s)
Bases de Datos Factuales , Modelos Neurológicos , Neurociencias , Encéfalo , Humanos , Neuronas
6.
Neural Comput ; 28(10): 2063-90, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27557104

RESUMEN

Large multiscale neuronal network simulations are of increasing value as more big data are gathered about brain wiring and organization under the auspices of a current major research initiative, such as Brain Research through Advancing Innovative Neurotechnologies. The development of these models requires new simulation technologies. We describe here the current use of the NEURON simulator with message passing interface (MPI) for simulation in the domain of moderately large networks on commonly available high-performance computers (HPCs). We discuss the basic layout of such simulations, including the methods of simulation setup, the run-time spike-passing paradigm, and postsimulation data storage and data management approaches. Using the Neuroscience Gateway, a portal for computational neuroscience that provides access to large HPCs, we benchmark simulations of neuronal networks of different sizes (500-100,000 cells), and using different numbers of nodes (1-256). We compare three types of networks, composed of either Izhikevich integrate-and-fire neurons (I&F), single-compartment Hodgkin-Huxley (HH) cells, or a hybrid network with half of each. Results show simulation run time increased approximately linearly with network size and decreased almost linearly with the number of nodes. Networks with I&F neurons were faster than HH networks, although differences were small since all tested cells were point neurons with a single compartment.


Asunto(s)
Encéfalo/fisiología , Modelos Neurológicos , Neuronas/fisiología , Potenciales de Acción , Simulación por Computador , Humanos , Redes Neurales de la Computación
7.
Neural Comput ; 27(4): 898-924, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25734493

RESUMEN

Calcium (Ca²âº) waves provide a complement to neuronal electrical signaling, forming a key part of a neuron's second messenger system. We developed a reaction-diffusion model of an apical dendrite with diffusible inositol triphosphate (IP3), diffusible Ca²âº, IP3 receptors (IP3Rs), endoplasmic reticulum (ER) Ca²âº leak, and ER pump (SERCA) on ER. Ca²âº is released from ER stores via IP3Rs upon binding of IP3 and Ca²âº. This results in Ca²âº-induced-Ca²âº-release (CICR) and increases Ca²âº spread. At least two modes of Ca²âº wave spread have been suggested: a continuous mode based on presumed relative homogeneity of ER within the cell and a pseudo-saltatory model where Ca²âº regeneration occurs at discrete points with diffusion between them. We compared the effects of three patterns of hypothesized IP3R distribution: (1) continuous homogeneous ER, (2) hotspots with increased IP3R density (IP3R hotspots), and (3) areas of increased ER density (ER stacks). All three modes produced Ca²âº waves with velocities similar to those measured in vitro (approximately 50-90 µm /sec). Continuous ER showed high sensitivity to IP3R density increases, with time to onset reduced and speed increased. Increases in SERCA density resulted in opposite effects. The measures were sensitive to changes in density and spacing of IP3R hotspots and stacks. Increasing the apparent diffusion coefficient of Ca²âº substantially increased wave speed. An extended electrochemical model, including voltage-gated calcium channels and AMPA synapses, demonstrated that membrane priming via AMPA stimulation enhances subsequent Ca²âº wave amplitude and duration. Our modeling suggests that pharmacological targeting of IP3Rs and SERCA could allow modulation of Ca²âº wave propagation in diseases where Ca²âº dysregulation has been implicated.


Asunto(s)
Señalización del Calcio/fisiología , Simulación por Computador , Retículo Endoplásmico/fisiología , Modelos Neurológicos , Neuronas/ultraestructura , Animales , Canales de Calcio Tipo N/fisiología , Canales de Potasio , Receptores AMPA/metabolismo , Canales de Sodio/metabolismo
8.
J Am Med Inform Assoc ; 31(7): 1463-1470, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38722233

RESUMEN

OBJECTIVE: ModelDB (https://modeldb.science) is a discovery platform for computational neuroscience, containing over 1850 published model codes with standardized metadata. These codes were mainly supplied from unsolicited model author submissions, but this approach is inherently limited. For example, we estimate we have captured only around one-third of NEURON models, the most common type of models in ModelDB. To more completely characterize the state of computational neuroscience modeling work, we aim to identify works containing results derived from computational neuroscience approaches and their standardized associated metadata (eg, cell types, research topics). MATERIALS AND METHODS: Known computational neuroscience work from ModelDB and identified neuroscience work queried from PubMed were included in our study. After pre-screening with SPECTER2 (a free document embedding method), GPT-3.5, and GPT-4 were used to identify likely computational neuroscience work and relevant metadata. RESULTS: SPECTER2, GPT-4, and GPT-3.5 demonstrated varied but high abilities in identification of computational neuroscience work. GPT-4 achieved 96.9% accuracy and GPT-3.5 improved from 54.2% to 85.5% through instruction-tuning and Chain of Thought. GPT-4 also showed high potential in identifying relevant metadata annotations. DISCUSSION: Accuracy in identification and extraction might further be improved by dealing with ambiguity of what are computational elements, including more information from papers (eg, Methods section), improving prompts, etc. CONCLUSION: Natural language processing and large language model techniques can be added to ModelDB to facilitate further model discovery, and will contribute to a more standardized and comprehensive framework for establishing domain-specific resources.


Asunto(s)
Biología Computacional , Neurociencias , Biología Computacional/métodos , Humanos , Metadatos , Curaduría de Datos/métodos , Modelos Neurológicos , Minería de Datos/métodos , Bases de Datos Factuales
9.
Neurol Clin Pract ; 14(3): e200293, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38596779

RESUMEN

Background and Objectives: In health care, large language models such as Generative Pretrained Transformers (GPTs), trained on extensive text datasets, have potential applications in reducing health care disparities across regions and populations. Previous software developed for lesion localization has been limited in scope. This study aims to evaluate the capability of GPT-4 for lesion localization based on clinical presentation. Methods: GPT-4 was prompted using history and neurologic physical examination (H&P) from published cases of acute stroke followed by questions for clinical reasoning with answering for "single or multiple lesions," "side," and "brain region" using Zero-Shot Chain-of-Thought and Text Classification prompting. GPT-4 output on 3 separate trials for each of 46 cases was compared with imaging-based localization. Results: GPT-4 successfully processed raw text from H&P to generate accurate neuroanatomical localization and detailed clinical reasoning. Performance metrics across trial-based analysis for specificity, sensitivity, precision, and F1-score were 0.87, 0.74, 0.75, and 0.74, respectively, for side; 0.94, 0.85, 0.84, and 0.85, respectively, for brain region. Class labels within the brain region were similarly high for all regions except the cerebellum and were also similar when considering all 3 trials to examine metrics by case. Errors were due to extrinsic causes-inadequate information in the published cases, and intrinsic causes-failures of logic or inadequate knowledge base. Discussion: This study reveals capabilities of GPT-4 in the localization of acute stroke lesions, showing a potential future role as a clinical tool in neurology.

10.
J Biomed Semantics ; 15(1): 13, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39080729

RESUMEN

BACKGROUND: Identifying chemical mentions within the Alzheimer's and dementia literature can provide a powerful tool to further therapeutic research. Leveraging the Chemical Entities of Biological Interest (ChEBI) ontology, which is rich in hierarchical and other relationship types, for entity normalization can provide an advantage for future downstream applications. We provide a reproducible hybrid approach that combines an ontology-enhanced PubMedBERT model for disambiguation with a dictionary-based method for candidate selection. RESULTS: There were 56,553 chemical mentions in the titles of 44,812 unique PubMed article abstracts. Based on our gold standard, our method of disambiguation improved entity normalization by 25.3 percentage points compared to using only the dictionary-based approach with fuzzy-string matching for disambiguation. For the CRAFT corpus, our method outperformed baselines (maximum 78.4%) with a 91.17% accuracy. For our Alzheimer's and dementia cohort, we were able to add 47.1% more potential mappings between MeSH and ChEBI when compared to BioPortal. CONCLUSION: Use of natural language models like PubMedBERT and resources such as ChEBI and PubChem provide a beneficial way to link entity mentions to ontology terms, while further supporting downstream tasks like filtering ChEBI mentions based on roles and assertions to find beneficial therapies for Alzheimer's and dementia.


Asunto(s)
Enfermedad de Alzheimer , Demencia , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Humanos , Investigación Biomédica Traslacional , Procesamiento de Lenguaje Natural , Ontologías Biológicas
11.
Res Sq ; 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36824778

RESUMEN

Background: Identifying chemical mentions within the Alzheimer's and dementia literature can provide a powerful tool to further therapeutic research. Leveraging the Chemical Entities of Biological Interest (ChEBI) ontology, which is rich in hierarchical and other relationship types, for entity normalization can provide an advantage for future downstream applications. We provide a reproducible hybrid approach that combines an ontology-enhanced PubMedBERT model for disambiguation with a dictionary-based method for candidate selection. Results: There were 56,553 chemical mentions in the titles of 44,812 unique PubMed article abstracts. Based on our gold standard, our method of disambiguation improved entity normalization by 25.3 percentage points compared to using only the dictionary-based approach with fuzzy-string matching for disambiguation. For our Alzheimer's and dementia cohort, we were able to add 47.1% more potential mappings between MeSH and ChEBI when compared to BioPortal. Conclusion: Use of natural language models like PubMedBERT and resources such as ChEBI and PubChem provide a beneficial way to link entity mentions to ontology terms, while further supporting downstream tasks like filtering ChEBI mentions based on roles and assertions to find beneficial therapies for Alzheimer's and dementia.

12.
Front Comput Neurosci ; 17: 1143323, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37583894

RESUMEN

The dynamical properties of the brain and the dynamics of the body strongly influence one another. Their interaction generates complex adaptive behavior. While a wide variety of simulation tools exist for neural dynamics or biomechanics separately, there are few options for integrated brain-body modeling. Here, we provide a tutorial to demonstrate how the widely-used NEURON simulation platform can support integrated neuromechanical modeling. As a first step toward incorporating biomechanics into a NEURON simulation, we provide a framework for integrating inputs from a "periphery" and outputs to that periphery. In other words, "body" dynamics are driven in part by "brain" variables, such as voltages or firing rates, and "brain" dynamics are influenced by "body" variables through sensory feedback. To couple the "brain" and "body" components, we use NEURON's pointer construct to share information between "brain" and "body" modules. This approach allows separate specification of brain and body dynamics and code reuse. Though simple in concept, the use of pointers can be challenging due to a complicated syntax and several different programming options. In this paper, we present five different computational models, with increasing levels of complexity, to demonstrate the concepts of code modularity using pointers and the integration of neural and biomechanical modeling within NEURON. The models include: (1) a neuromuscular model of calcium dynamics and muscle force, (2) a neuromechanical, closed-loop model of a half-center oscillator coupled to a rudimentary motor system, (3) a closed-loop model of neural control for respiration, (4) a pedagogical model of a non-smooth "brain/body" system, and (5) a closed-loop model of feeding behavior in the sea hare Aplysia californica that incorporates biologically-motivated non-smooth dynamics. This tutorial illustrates how NEURON can be integrated with a broad range of neuromechanical models. Code available at: https://github.com/fietkiewicz/PointerBuilder.

13.
JMIR Res Protoc ; 12: e46990, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37995115

RESUMEN

BACKGROUND: Adolescents at risk for substance misuse are rarely identified early due to existing barriers to screening that include the lack of time and privacy in clinic settings. Games can be used for screening and thus mitigate these barriers. Performance in a game is influenced by cognitive processes such as working memory and inhibitory control. Deficits in these cognitive processes can increase the risk of substance use. Further, substance misuse affects these cognitive processes and may influence game performance, captured by in-game metrics such as reaction time or time for task completion. Digital biomarkers are measures generated from digital tools that explain underlying health processes and can be used to predict, identify, and monitor health outcomes. As such, in-game performance metrics may represent digital biomarkers of cognitive processes that can offer an objective method for assessing underlying risk for substance misuse. OBJECTIVE: This is a protocol for a proof-of-concept study to investigate the utility of in-game performance metrics as digital biomarkers of cognitive processes implicated in the development of substance misuse. METHODS: This study has 2 aims. In aim 1, using previously collected data from 166 adolescents aged 11-14 years, we extracted in-game performance metrics from a video game and are using machine learning methods to determine whether these metrics predict substance misuse. The extraction of in-game performance metrics was guided by literature review of in-game performance metrics and gameplay guidebooks provided by the game developers. In aim 2, using data from a new sample of 30 adolescents playing the same video game, we will test if metrics identified in aim 1 correlate with cognitive processes. Our hypothesis is that in-game performance metrics that are predictive of substance misuse in aim 1 will correlate with poor cognitive function in our second sample. RESULTS: This study was funded by National Institute on Drug Abuse through the Center for Technology and Behavioral Health Pilot Core in May 2022. To date, we have extracted 285 in-game performance metrics. We obtained institutional review board approval on October 11, 2022. Data collection for aim 2 is ongoing and projected to end in February 2024. Currently, we have enrolled 12 participants. Data analysis for aim 2 will begin once data collection is completed. The results from both aims will be reported in a subsequent publication, expected to be published in late 2024. CONCLUSIONS: Screening adolescents for substance use is not consistently done due to barriers that include the lack of time. Using games that provide an objective measure to identify adolescents at risk for substance misuse can increase screening rates, early identification, and intervention. The results will inform the utility of in-game performance metrics as digital biomarkers for identifying adolescents at high risk for substance misuse. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/46990.

14.
Front Neuroinform ; 16: 847108, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35655652

RESUMEN

Neuronal activity is the result of both the electrophysiology and chemophysiology. A neuron can be well-represented for the purposes of electrophysiological simulation as a tree composed of connected cylinders. This representation is also apt for 1D simulations of their chemophysiology, provided the spatial scale is larger than the diameter of the cylinders and there is radial symmetry. Higher dimensional simulation is necessary to accurately capture the dynamics when these criteria are not met, such as with wave curvature, spines, or diffusion near the soma. We have developed a solution to enable efficient finite volume method simulation of reaction-diffusion kinetics in intracellular 3D regions in neuron and network models and provide an implementation within the NEURON simulator. An accelerated version of the CTNG 3D reconstruction algorithm transforms morphologies suitable for ion-channel based simulations into consistent 3D voxelized regions. Kinetics are then solved using a parallel algorithm based on Douglas-Gunn that handles the irregular 3D geometry of a neuron; these kinetics are coupled to NEURON's 1D mechanisms for ion channels, synapses, pumps, and so forth. The 3D domain may cover the entire cell or selected regions of interest. Simulations with dendritic spines and of the soma reveal details of dynamics that would be missed in a pure 1D simulation. We describe and validate the methods and discuss their performance.

15.
eNeuro ; 9(3)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35443991

RESUMEN

Activity-dependent modifications of synaptic efficacies are a cellular substrate of learning and memory. Experimental evidence shows that these modifications are synapse specific and that the long-lasting effects are associated with the sustained increase in concentration of specific proteins like PKMζ However, such proteins are likely to diffuse away from their initial synaptic location and spread out to neighboring synapses, potentially compromising synapse specificity. In this article, we address the issue of synapse specificity during memory maintenance. Assuming that the long-term maintenance of synaptic plasticity is accomplished by a molecular switch, we carry out analytical calculations and perform simulations using the reaction-diffusion package in NEURON to determine the limits of synapse specificity during maintenance. Moreover, we explore the effects of the diffusion and degradation rates of proteins and of the geometrical characteristics of dendritic spines on synapse specificity. We conclude that the necessary conditions for synaptic specificity during maintenance require that molecular switches reside in dendritic spines. The requirement for synaptic specificity when the molecular switch resides in spines still imposes strong limits on the diffusion and turnover of rates of maintenance molecules, as well as on the morphologic properties of synaptic spines. These constraints are quite general and apply to most existing models suggested for maintenance. The parameter values can be experimentally evaluated, and if they do not fit the appropriate predicted range, the validity of this class of maintenance models would be challenged.


Asunto(s)
Potenciación a Largo Plazo , Plasticidad Neuronal , Espinas Dendríticas/metabolismo , Difusión , Hipocampo , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sinapsis/metabolismo
16.
eNeuro ; 9(4)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35927026

RESUMEN

Spreading depolarization (SD) is a slow-moving wave of neuronal depolarization accompanied by a breakdown of ion concentration homeostasis, followed by long periods of neuronal silence (spreading depression), and is associated with several neurologic conditions. We developed multiscale (ions to tissue slice) computer models of SD in brain slices using the NEURON simulator: 36,000 neurons (two voltage-gated ion channels; three leak channels; three ion exchangers/pumps) in the extracellular space (ECS) of a slice (1 mm sides, varying thicknesses) with ion (K+, Cl-, Na+) and O2 diffusion and equilibration with a surrounding bath. Glia and neurons cleared K+ from the ECS via Na+/K+ pumps. SD propagated through the slices at realistic speeds of 2-4 mm/min, which increased by as much as 50% in models incorporating the effects of hypoxia or propionate. In both cases, the speedup was mediated principally by ECS shrinkage. Our model allows us to make testable predictions, including the following: (1) SD can be inhibited by enlarging ECS volume; (2) SD velocity will be greater in areas with greater neuronal density, total neuronal volume, or larger/more dendrites; (3) SD is all-or-none: initiating K+ bolus properties have little impact on SD speed; (4) Slice thickness influences SD because of relative hypoxia in the slice core, exacerbated by SD in a pathologic cycle; and (5) SD and high neuronal spike rates will be observed in the core of the slice. Cells in the periphery of the slice near an oxygenated bath will resist SD.


Asunto(s)
Depresión de Propagación Cortical , Encéfalo , Simulación por Computador , Computadores , Depresión de Propagación Cortical/fisiología , Humanos , Hipoxia , Potasio/farmacología , Sodio
17.
Front Neuroinform ; 16: 884046, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35832575

RESUMEN

The need for reproducible, credible, multiscale biological modeling has led to the development of standardized simulation platforms, such as the widely-used NEURON environment for computational neuroscience. Developing and maintaining NEURON over several decades has required attention to the competing needs of backwards compatibility, evolving computer architectures, the addition of new scales and physical processes, accessibility to new users, and efficiency and flexibility for specialists. In order to meet these challenges, we have now substantially modernized NEURON, providing continuous integration, an improved build system and release workflow, and better documentation. With the help of a new source-to-source compiler of the NMODL domain-specific language we have enhanced NEURON's ability to run efficiently, via the CoreNEURON simulation engine, on a variety of hardware platforms, including GPUs. Through the implementation of an optimized in-memory transfer mechanism this performance optimized backend is made easily accessible to users, providing training and model-development paths from laptop to workstation to supercomputer and cloud platform. Similarly, we have been able to accelerate NEURON's reaction-diffusion simulation performance through the use of just-in-time compilation. We show that these efforts have led to a growing developer base, a simpler and more robust software distribution, a wider range of supported computer architectures, a better integration of NEURON with other scientific workflows, and substantially improved performance for the simulation of biophysical and biochemical models.

18.
Elife ; 92020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31967544

RESUMEN

Magneto- and electro-encephalography (MEG/EEG) non-invasively record human brain activity with millisecond resolution providing reliable markers of healthy and disease states. Relating these macroscopic signals to underlying cellular- and circuit-level generators is a limitation that constrains using MEG/EEG to reveal novel principles of information processing or to translate findings into new therapies for neuropathology. To address this problem, we built Human Neocortical Neurosolver (HNN, https://hnn.brown.edu) software. HNN has a graphical user interface designed to help researchers and clinicians interpret the neural origins of MEG/EEG. HNN's core is a neocortical circuit model that accounts for biophysical origins of electrical currents generating MEG/EEG. Data can be directly compared to simulated signals and parameters easily manipulated to develop/test hypotheses on a signal's origin. Tutorials teach users to simulate commonly measured signals, including event related potentials and brain rhythms. HNN's ability to associate signals across scales makes it a unique tool for translational neuroscience research.


Neurons carry information in the form of electrical signals. Each of these signals is too weak to detect on its own. But the combined signals from large groups of neurons can be detected using techniques called EEG and MEG. Sensors on or near the scalp detect changes in the electrical activity of groups of neurons from one millisecond to the next. These recordings can also reveal changes in brain activity due to disease. But how do EEG/MEG signals relate to the activity of neural circuits? While neuroscientists can rarely record electrical activity from inside the human brain, it is much easier to do so in other animals. Computer models can then compare these recordings from animals to the signals in human EEG/MEG to infer how the activity of neural circuits is changing. But building and interpreting these models requires advanced skills in mathematics and programming, which not all researchers possess. Neymotin et al. have therefore developed a user-friendly software platform that can help translate human EEG/MEG recordings into circuit-level activity. Known as the Human Neocortical Neurosolver, or HNN for short, the open-source tool enables users to develop and test hypotheses on the neural origin of EEG/MEG signals. The model simulates the electrical activity of cells in the outer layers of the human brain, the neocortex. By feeding human EEG/MEG data into the model, researchers can predict patterns of circuit-level activity that might have given rise to the EEG/MEG data. The HNN software includes tutorials and example datasets for commonly measured signals, including brain rhythms. It is free to use and can be installed on all major computer platforms or run online. HNN will help researchers and clinicians who wish to identify the neural origins of EEG/MEG signals in the healthy or diseased brain. Likewise, it will be useful to researchers studying brain activity in animals, who want to know how their findings might relate to human EEG/MEG signals. As HNN is suitable for users without training in computational neuroscience, it offers an accessible tool for discoveries in translational neuroscience.


Asunto(s)
Electroencefalografía/métodos , Magnetoencefalografía/métodos , Neocórtex/fisiología , Programas Informáticos , Algoritmos , Potenciales Evocados , Humanos , Modelos Neurológicos , Interfaz Usuario-Computador
19.
IEEE/ACM Trans Comput Biol Bioinform ; 16(3): 1007-1019, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-28961124

RESUMEN

The intra-cellular calcium signaling pathways of a neuron depends on both biochemical reactions and diffusions. Some quasi-isolated compartments (e.g., spines) are so small and calcium concentrations are so low that one extra molecule diffusing in by chance can make a nontrivial difference in concentration (percentage-wise). These rare events can affect dynamics discretely in such a way that they cannot be evaluated by a deterministic and continuous simulation. Stochastic models of such a system provide a more detailed understanding of these systems than existing deterministic models because they capture their behavior at a molecular level. Our research focuses on the development of a high performance parallel discrete event simulation environment, Neuron Time Warp (NTW), which is intended for use in the parallel simulation of stochastic reaction-diffusion systems such as intra-calcium signaling. NTW is integrated with NEURON, a simulator which is widely used within the neuroscience community. We simulate two models, a calcium buffer and a calcium wave model. The calcium buffer model is employed in order to verify the correctness and performance of NTW by comparing it to a sequential deterministic simulation in NEURON. We also derived a discrete event calcium wave model from a deterministic model using the stochastic $\text{IP}_{3}\text{R}$IP3R structure.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Neuronas/metabolismo , Algoritmos , Biología Computacional , Simulación por Computador , Citosol/metabolismo , Difusión , Retículo Endoplásmico/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/química , Modelos Neurológicos , Probabilidad , Lenguajes de Programación , Programas Informáticos , Procesos Estocásticos
20.
Neuroinformatics ; 17(3): 361-371, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30382537

RESUMEN

Knowledge discovery via an informatics resource is constrained by the completeness of the resource, both in terms of the amount of data it contains and in terms of the metadata that exists to describe the data. Increasing completeness in one of these categories risks reducing completeness in the other because manually curating metadata is time consuming and is restricted by familiarity with both the data and the metadata annotation scheme. The diverse interests of a research community may drive a resource to have hundreds of metadata tags with few examples for each making it challenging for humans or machine learning algorithms to learn how to assign metadata tags properly. We demonstrate with ModelDB, a computational neuroscience model discovery resource, that using manually-curated regular-expression based rules can overcome this challenge by parsing existing texts from data providers during user data entry to suggest metadata annotations and prompt them to suggest other related metadata annotations rather than leaving the task to a curator. In the ModelDB implementation, analyzing the abstract identified 6.4 metadata tags per abstract at 79% precision. Using the full-text produced higher recall with low precision (41%), and the title alone produced few (1.3) metadata annotations per entry; we thus recommend data providers use their abstract during upload. Grouping the possible metadata annotations into categories (e.g. cell type, biological topic) revealed that precision and recall for the different text sources varies by category. Given this proof-of-concept, other bioinformatics resources can likewise improve the quality of their metadata by adopting our approach of prompting data uploaders with relevant metadata at the minimal cost of formalizing rules for each potential metadata annotation.


Asunto(s)
Biología Computacional/métodos , Análisis de Datos , Aprendizaje Automático , Metadatos , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA