Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Plant Cell Environ ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39163322

RESUMEN

Cortical lacunae caused by drought, especially observed in hybrids originating from Vitis rupestris, disrupt the connection between roots and soil. Yet, the physiological processes behind lacuna formation during drought and its consistency across Vitis species remain unclear. Here, we used a root pressure probe to investigate fine root hydraulic and mechanical properties, in the arid-adapted R-65 and drought-susceptible 101-14Mgt cultivars. We then performed P-V curves, root sap osmolality, and electrolyte leakage (EL) and used fluorescent light microscopy techniques. Only 101-14Mgt showed lacunae formation during drought due to its stiffer cortical tissue, unlike R-65. Lacunae resulted in a notable decline in root hydraulic conductivity during severe drought, with increased EL and root sap osmolality, indicating potential cellular damage. R-65 displayed different and xerophyte-like characteristics featuring a higher turgor loss point and decreased root capacitance, essential for maintaining root structural integrity in arid conditions. Our findings highlight lacuna formation is impacted by root tissue elasticity possibly linked to specific Vitis species favoring deeper rooting. In arid-adapted grapevines, hydraulic regulators such as reduced turgor loss point, and root capacitance could contribute to enhanced drought tolerance.

2.
Ann Bot ; 134(2): 205-218, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38477369

RESUMEN

BACKGROUND AND AIMS: Many agricultural areas are expected to face hotter, drier conditions from climate change. Understanding the mechanisms that crops use to mitigate these stresses can guide breeding for more tolerant plant material. We tested relationships between traits, physiological function in hot conditions and historical climate associations to evaluate these mechanisms for winegrapes. We expected a more negative leaf osmotic potential at full hydration (πo), which reduces leaf turgor loss during drought, and either a metabolically cheaper or more osmoprotectant leaf chemical composition, to allow cultivars associated with hot, dry regions to maintain greater gas exchange in hot growing conditions. METHODS: We measured πo, gas exchange and leaf chemistry for seven commercially important winegrape cultivars that vary widely in historical climate associations. Vines were grown in common-garden field conditions in a hot wine-growing region (Davis, CA, USA) and measured over the hottest period of the growing season (July-September). KEY RESULTS: The value of πo varied significantly between cultivars, and all cultivars significantly reduced πo (osmotically adjusted) over the study period, although osmotic adjustment did not vary across cultivars. The value of πo was correlated with gas exchange and climate associations, but in the direction opposite to expected. Photosynthesis and πo were higher in the cultivars associated with hotter, less humid regions. Leaf chemical composition varied between cultivars but was not related to climate associations. CONCLUSIONS: These findings suggest that maintenance of leaf turgor is not a primary limitation on grapevine adaptation to hot or atmospherically dry growing conditions. Thus, selecting for a more negative πo or greater osmotic adjustment is not a promising strategy to develop more climate-resilient grape varieties, contrary to findings for other crops. Future work is needed to identify the mechanisms increasing photosynthesis in the cultivars associated with hot, dry regions.


Asunto(s)
Sequías , Calor , Fotosíntesis , Hojas de la Planta , Vitis , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Vitis/fisiología , Vitis/crecimiento & desarrollo , Cambio Climático , Adaptación Fisiológica
3.
Int J Biometeorol ; 68(8): 1559-1571, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38652161

RESUMEN

California contains a broad geography over which climate conditions can be suitable for cultivating multiple varieties of winegrapes. However, climate change is projected to make winegrape cultivation more challenging across many of California's winegrowing regions. In order to understand the potential effects of climate change on winegrapes, this study models variety-specific phenology for six winegrape varieties and quantifies the change in phenology and viticulturally-important agroclimate metrics over 12 of California's American Viticultural Areas (AVAs) by the mid-21st century. Results show more rapid development for winegrapes with earlier budburst, flowering, veraison, and maturation across all varieties and AVAs. Cabernet Sauvignon shows the greatest change in phenology timing, while Chardonnay shows the least change. Likewise, the West Sonoma Coast AVA shows the greatest average change in phenology timing across varieties and development stages and Lodi AVA shows the least. Projected changes in agroclimatic metrics include an additional month of potentially damaging heat days (above 35 °C) in some AVAs, and decreases in frost days. These results have implications for numerous factors related to viticultural production, including water resources management and crop yield and quality, and underscore the need for California winegrape growers to improve their resilience to climate change by adopting strategies such as increasing soil health and water use efficiency and selecting cultivars suited for future climate conditions. By conducting climate effects analyses at the variety-specific and AVA scale, important information is provided to the winegrowing industry at a resolution that can support decision-making towards resilience.


Asunto(s)
Cambio Climático , Vitis , California , Vitis/crecimiento & desarrollo , Vino
4.
Physiol Plant ; 175(5): e14040, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882281

RESUMEN

Balsam poplar (Populus balsamifera L.) is a widespread tree species in North America with significant ecological and economic value. However, little is known about the susceptibility of saplings to drought-induced embolism and its link to water release from surrounding xylem fibers. Questions remain regarding localized mechanisms that contribute to the survival of saplings in vivo of this species under drought. Using X-ray micro-computed tomography on intact saplings of genotypes Gillam-5 and Carnduff-9, we found that functional vessels are embedded in a matrix of water-filled fibers under well-watered conditions in both genotypes. However, water-depleted fibers started to appear under moderate drought stress while vessels remained water-filled in both genotypes. Drought-induced xylem embolism susceptibility was comparable between genotypes, and a greater frequency of smaller diameter vessels in GIL-5 did not increase embolism resistance in this genotype. Despite having smaller vessels and a total vessel number that was comparable to CAR-9, stomatal conductance was generally higher in GIL-5 compared to CAR-9. In conclusion, our in vivo data on intact saplings indicate that differences in embolism susceptibility are negligible between GIL-5 and CAR-9, and that fiber water release should be considered as a mechanism that contributes to the maintenance of vessel functional status in saplings of balsam poplar experiencing their first drought event.


Asunto(s)
Embolia , Populus , Agua , Populus/genética , Microtomografía por Rayos X , Sequías , Xilema
5.
Plant Physiol ; 186(1): 373-387, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33576825

RESUMEN

Xylem networks are vulnerable to the formation and spread of gas embolisms that reduce water transport. Embolisms spread through interconduit pits, but the three-dimensional (3D) complexity and scale of xylem networks means that the functional implications of intervessel connections are not well understood. Here, xylem networks of grapevine (Vitis vinifera L.) were reconstructed from 3D high-resolution X-ray micro-computed tomography (microCT) images. Xylem network performance was then modeled to simulate loss of hydraulic conductivity under increasingly negative xylem sap pressure simulating drought stress conditions. We also considered the sensitivity of xylem network performance to changes in key network parameters. We found that the mean pit area per intervessel connection was constant across 10 networks from three, 1.5-m stem segments, but short (0.5 cm) segments fail to capture complete network connectivity. Simulations showed that network organization imparted additional resistance to embolism spread beyond the air-seeding threshold of pit membranes. Xylem network vulnerability to embolism spread was most sensitive to variation in the number and location of vessels that were initially embolized and pit membrane vulnerability. Our results show that xylem network organization can increase stem resistance to embolism spread by 40% (0.66 MPa) and challenge the notion that a single embolism can spread rapidly throughout an entire xylem network.


Asunto(s)
Sequías , Vitis/fisiología , Xilema/fisiología , Transporte Biológico , Imagenología Tridimensional , Microtomografía por Rayos X
6.
Plant Cell Environ ; 45(9): 2607-2616, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35736139

RESUMEN

Tracheid buckling may protect leaves in the dynamic environments of forest canopies, where rapid intensifications of evaporative demand, such as those brought on by changes in light availability, can result in sudden increases in transpiration rate. While treetop leaves function in reliably direct light, leaves below the upper crown must tolerate rapid, thermally driven increases in evaporative demand. Using synchrotron-based X-ray microtomography, we visualized impacts of experimentally induced water stress and subsequent fogging on living cells in redwood leaves, adding ecological and functional context through crown-wide explorations of variation in leaf physiology and microclimate. Under drought, leaf transfusion tracheids buckle, releasing water that supplies sufficient temporal reserves for leaves to reduce stomatal conductance safely while stopping the further rise of tension. Tracheid buckling fraction decreases with height and is closely coordinated with transfusion tissue capacity and stomatal conductance to provide temporal reserves optimized for local variation in microclimate. Foliar water uptake fully restores collapsed and air-filled transfusion tracheids in leaves on excised shoots, suggesting that trees may use aerial water sources for recovery. In the intensely variable deep-crown environment, foliar water uptake can allow for repetitive cycles of tracheid buckling and unbuckling, protecting the tree from damaging levels of hydraulic tension and supporting leaf survival.


Asunto(s)
Sequoia , Árboles , Sequías , Hojas de la Planta/fisiología , Transpiración de Plantas , Sequoia/fisiología , Árboles/fisiología , Tiempo (Meteorología)
7.
Plant Cell Environ ; 45(5): 1362-1381, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35141930

RESUMEN

Leaves balance CO2 and radiative absorption while maintaining water transport to maximise photosynthesis. Related species with contrasting leaf anatomy can provide insights into inherent and stress-induced links between structure and function for commonly measured leaf traits for important crops. We used two walnut species with contrasting mesophyll anatomy to evaluate these integrated exchange processes under non-stressed and drought conditions using a combination of light microscopy, X-ray microCT, gas exchange, hydraulic conductance, and chlorophyll distribution profiles through leaves. Juglans regia had thicker palisade mesophyll, higher fluorescence in the palisade, and greater low-mesophyll porosity that were associated with greater gas-phase diffusion (gIAS ), stomatal and mesophyll (gm ) conductances and carboxylation capacity. More and highly-packed mesophyll cells and bundle sheath extensions (BSEs) in Juglans microcarpa led to higher fluorescence in the spongy and in proximity to the BSEs. Both species exhibited drought-induced reductions in mesophyll cell volume, yet the associated increases in porosity and gIAS were obscured by declines in biochemical activity that decreased gm . Inherent differences in leaf anatomy between the species were linked to differences in gas exchange, light absorption and photosynthetic capacity, and drought-induced changes in leaf structure impacted performance via imposing species-specific limitations to light absorption, gas exchange and hydraulics.


Asunto(s)
Dióxido de Carbono , Desecación , Células del Mesófilo , Fotosíntesis , Hojas de la Planta/anatomía & histología
8.
Plant Cell Environ ; 45(8): 2351-2365, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35642731

RESUMEN

Similar to other cropping systems, few walnut cultivars are used as scion in commercial production. Germplasm collections can be used to diversify cultivar options and hold potential for improving crop productivity, disease resistance and stress tolerance. In this study, we explored the anatomical and biochemical bases of photosynthetic capacity and response to water stress in 11 Juglans regia accessions in the U.S. department of agriculture, agricultural research service (USDA-ARS) National Clonal Germplasm. Net assimilation rate (An ) differed significantly among accessions and was greater in lower latitudes coincident with higher stomatal and mesophyll conductances, leaf thickness, mesophyll porosity, gas-phase diffusion, leaf nitrogen and lower leaf mass and stomatal density. High CO2 -saturated assimilation rates led to increases in An under diffusional and biochemical limitations. Greater An was found in lower-latitude accessions native to climates with more frost-free days, greater precipitation seasonality and lower temperature seasonality. As expected, water stress consistently impaired photosynthesis with the highest % reductions in lower-latitude accessions (A3, A5 and A9), which had the highest An under well-watered conditions. However, An for A3 and A5 remained among the highest under dehydration. J. regia accessions, which have leaf structural traits and biochemistry that enhance photosynthesis, could be used as commercial scions or breeding parents to enhance productivity.


Asunto(s)
Juglans , Dióxido de Carbono , Deshidratación , Genotipo , Juglans/genética , Células del Mesófilo/fisiología , Fotosíntesis/fisiología , Hojas de la Planta
9.
Irrig Sci ; 40(4-5): 515-530, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172251

RESUMEN

Characterization of model errors is important when applying satellite-driven evapotranspiration (ET) models to water resource management problems. This study examines how uncertainty in meteorological forcing data and land surface modeling propagate through to errors in final ET data calculated using the Satellite Irrigation Management Support (SIMS) model, a computationally efficient ET model driven with satellite surface reflectance values. The model is applied to three instrumented winegrape vineyards over the 2017-2020 time period and the spatial and temporal variation in errors are analyzed. We illustrate how meteorological data inputs can introduce biases that vary in space and at seasonal timescales, but that can persist from year to year. We also observe that errors in SIMS estimates of land surface conductance can have a particularly strong dependence on time of year. Overall, meteorological inputs introduced RMSE of 0.33-0.65 mm/day (7-27%) across sites, while SIMS introduced RMSE of 0.55-0.83 mm/day (19-24%). The relative error contribution from meteorological inputs versus SIMS varied across sites; errors from SIMS were larger at one site, errors from meteorological inputs were larger at a second site, and the error contributions were of equal magnitude at the third site. The similar magnitude of error contributions is significant given that many satellite-driven ET models differ in their approaches to estimating land surface conductance, but often rely on similar or identical meteorological forcing data. The finding is particularly notable given that SIMS makes assumptions about the land surface (no soil evaporation or plant water stress) that do not always hold in practice. The results of this study show that improving SIMS by eliminating these assumptions would result in meteorological inputs dominating the error budget of the model on the whole. This finding underscores the need for further work on characterizing spatial uncertainty in the meteorological forcing of ET. Supplementary Information: The online version contains supplementary material available at 10.1007/s00271-022-00808-9.

10.
Irrig Sci ; 40(4-5): 609-634, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172250

RESUMEN

Robust information on consumptive water use (evapotranspiration, ET) derived from remote sensing can significantly benefit water decision-making in agriculture, informing irrigation schedules and water management plans over extended regions. To be of optimal utility for operational usage, these remote sensing ET data should be generated at the sub-field spatial resolution and daily-to-weekly timesteps commensurate with the scales of water management activities. However, current methods for field-scale ET retrieval based on thermal infrared (TIR) imaging, a valuable diagnostic of canopy stress and surface moisture status, are limited by the temporal revisit of available medium-resolution (100 m or finer) thermal satellite sensors. This study investigates the efficacy of a data fusion method for combining information from multiple medium-resolution sensors toward generating high spatiotemporal resolution ET products for water management. TIR data from Landsat and ECOSTRESS (both at ~ 100-m native resolution), and VIIRS (375-m native) are sharpened to a common 30-m grid using surface reflectance data from the Harmonized Landsat-Sentinel dataset. Periodic 30-m ET retrievals from these combined thermal data sources are fused with daily retrievals from unsharpened VIIRS to generate daily, 30-m ET image timeseries. The accuracy of this mapping method is tested over several irrigated cropping systems in the Central Valley of California in comparison with flux tower observations, including measurements over irrigated vineyards collected in the GRAPEX campaign. Results demonstrate the operational value added by the augmented TIR sensor suite compared to Landsat alone, in terms of capturing daily ET variability and reduced latency for real-time applications. The method also provides means for incorporating new sources of imaging from future planned thermal missions, further improving our ability to map rapid changes in crop water use at field scales.

11.
Irrig Sci ; 40(4-5): 593-608, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172254

RESUMEN

Improved accuracy of evapotranspiration (ET) estimation, including its partitioning between transpiration (T) and surface evaporation (E), is key to monitor agricultural water use in vineyards, especially to enhance water use efficiency in semi-arid regions such as California, USA. Remote-sensing methods have shown great utility in retrieving ET from surface energy balance models based on thermal infrared data. Notably, the two-source energy balance (TSEB) has been widely and robustly applied in numerous landscapes, including vineyards. However, vineyards add an additional complexity where the landscape is essentially made up of two distinct zones: the grapevine and the interrow, which is often seasonally covered by an herbaceous cover crop. Therefore, it becomes more complex to disentangle the various contributions of the different vegetation elements to total ET, especially through TSEB, which assumes a single vegetation source over a soil layer. As such, a remote-sensing-based three-source energy balance (3SEB) model, which essentially adds a vegetation source to TSEB, was applied in an experimental vineyard located in California's Central Valley to investigate whether it improves the depiction of the grapevine-interrow system. The model was applied in four different blocks in 2019 and 2020, where each block had an eddy-covariance (EC) tower collecting continuous flux, radiometric, and meteorological measurements. 3SEB's latent and sensible heat flux retrievals were accurate with an overall RMSD ~ 50 W/m2 compared to EC measurements. 3SEB improved upon TSEB simulations, with the largest differences being concentrated in the spring season, when there is greater mixing between grapevine foliage and the cover crop. Additionally, 3SEB's modeled ET partitioning (T/ET) compared well against an EC T/ET retrieval method, being only slightly underestimated. Overall, these promising results indicate 3SEB can be of great utility to vineyard irrigation management, especially to improve T/ET estimations and to quantify the contribution of the cover crop to ET. Improved knowledge of T/ET can enhance grapevine water stress detection to support irrigation and water resource management. Supplementary Information: The online version contains supplementary material available at 10.1007/s00271-022-00787-x.

12.
Proc Biol Sci ; 288(1945): 20203145, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33622134

RESUMEN

Maintaining high rates of photosynthesis in leaves requires efficient movement of CO2 from the atmosphere to the mesophyll cells inside the leaf where CO2 is converted into sugar. CO2 diffusion inside the leaf depends directly on the structure of the mesophyll cells and their surrounding airspace, which have been difficult to characterize because of their inherently three-dimensional organization. Yet faster CO2 diffusion inside the leaf was probably critical in elevating rates of photosynthesis that occurred among angiosperm lineages. Here we characterize the three-dimensional surface area of the leaf mesophyll across vascular plants. We show that genome size determines the sizes and packing densities of cells in all leaf tissues and that smaller cells enable more mesophyll surface area to be packed into the leaf volume, facilitating higher CO2 diffusion. Measurements and modelling revealed that the spongy mesophyll layer better facilitates gaseous phase diffusion while the palisade mesophyll layer better facilitates liquid-phase diffusion. Our results demonstrate that genome downsizing among the angiosperms was critical to restructuring the entire pathway of CO2 diffusion into and through the leaf, maintaining high rates of CO2 supply to the leaf mesophyll despite declining atmospheric CO2 levels during the Cretaceous.


Asunto(s)
Dióxido de Carbono , Células del Mesófilo , Tamaño de la Célula , Tamaño del Genoma , Fotosíntesis , Hojas de la Planta
13.
New Phytol ; 232(2): 567-578, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34235751

RESUMEN

Leaf habit is a major axis of plant diversity that has consequences for carbon balance since the leaf is the primary site of photosynthesis. Nonstructural carbohydrates (NSCs) produced by photosynthesis can be allocated to storage and serve as a resiliency mechanism to future abiotic and biotic stress. However, how leaf habit affects NSC storage in an evolutionary context has not been shown. Using a comparative physiological framework and an analysis of evolutionary model fitting, we examined if variation in NSC storage is explained by leaf habit. We measured sugar and starch concentrations in 51 oak species (Quercus spp.) growing in a common garden and representing multiple evolutions of three different leaf habits (deciduous, brevideciduous and evergreen). The best fitting evolutionary models indicated that deciduous oak species are evolving towards higher NSC concentrations than their brevideciduous and evergreen relatives. Notably, this was observed for starch (the primary storage molecule) in the stem (a long-term C storage organ). Overall, our work provides insight into the evolutionary drivers of NSC storage and suggests that a deciduous strategy may confer an advantage against stress associated with a changing world. Future work should examine additional clades to further corroborate this idea.


Asunto(s)
Quercus , Metabolismo de los Hidratos de Carbono , Carbohidratos , Hojas de la Planta , Árboles
14.
New Phytol ; 229(1): 272-283, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32171020

RESUMEN

Structural changes during severe drought stress greatly modify the hydraulic properties of fine roots. Yet, the physiological basis behind the restoration of fine root water uptake capacity during water recovery remains unknown. Using neutron radiography (NR), X-ray micro-computed tomography (micro-CT), fluorescence microscopy, and fine root hydraulic conductivity measurements (Lpr ), we examined how drought-induced changes in anatomy and hydraulic properties of contrasting grapevine rootstocks are coupled with fine root growth dynamics during drought and return of soil moisture. Lacunae formation in drought-stressed fine roots was associated with a significant decrease in fine root Lpr for both rootstocks. However, lacunae formation occurred under milder stress in the drought-resistant rootstock, 110R. Suberin was deposited at an earlier developmental stage in fine roots of 101-14Mgt (i.e. drought susceptible), probably limiting cortical lacunae formation during mild stress. During recovery, we found that only 110R fine roots showed rapid re-establishment of elongation and water uptake capacity and we found that soil water status surrounding root tips differed between rootstocks as imaged with NR. These data suggest that drought resistance in grapevine rootstocks is associated with rapid re-establishment of growth and Lpr near the root tip upon re-watering by limiting competing sites along the root cylinder.


Asunto(s)
Sequías , Vitis , Meristema , Raíces de Plantas , Agua , Microtomografía por Rayos X
15.
Plant Physiol ; 184(2): 881-894, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32764130

RESUMEN

Knowledge about physiological stress thresholds provides crucial information about plant performance and survival under drought. In this study, we report on the triphasic nature of the relationship between plant water potential (Ψ) at predawn and midday and describe a method that predicts Ψ at stomatal closure and turgor loss exclusively from this water potential curve (WP curve). The method is based on a piecewise linear regression model that was developed to predict the boundaries (termed Θ1 and Θ2) separating the three phases of the curve and corresponding slope values. The method was tested for three economically important woody species. For all species, midday Ψ was much more negative than predawn Ψ during phase I (mild drought), reductions in midday Ψ were minor while predawn Ψ continued to decline during phase II (moderate drought), and midday and predawn Ψ reached similar values during phase III (severe drought). Corresponding measurement of leaf gas exchange indicated that boundary Θ1 between phases I and II coincided with Ψ at stomatal closure. Data from pressure-volume curves demonstrated that boundary Θ2 between phases II and III predicted Ψ at leaf turgor loss. The WP curve method described here is an advanced application of the Scholander-type pressure chamber to categorize plant dehydration under drought into three distinct phases and to predict Ψ thresholds of stomatal closure and turgor loss.


Asunto(s)
Adaptación Fisiológica , Ritmo Circadiano/fisiología , Deshidratación , Sequías , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Agua/metabolismo , Juglans/fisiología , Modelos Teóricos , Prunus dulcis/fisiología , Vitis/fisiología
16.
Plant Physiol ; 179(4): 1658-1668, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718351

RESUMEN

Water discharge from stem internal storage compartments is thought to minimize the risk of vessel cavitation. Based on this concept, one would expect that water storage compartments involved in the buffering of xylem tensions empty before the onset of vessel cavitation under drought stress, and potentially refill after soil saturation. However, scant in vivo data exist that elucidate this localized spatiotemporal coupling. In this study on intact saplings of American chestnut (Castanea dentata), x-ray computed microtomography (microCT) showed that the xylem matrix surrounding vessels releases stored water and becomes air-filled either concurrent to or after vessel cavitation under progressive drought stress. Among annual growth rings, the xylem matrix of the current year remained largely water-filled even under severe drought stress. In comparison, microtomography images collected on excised stems showed that applied pressures of much greater than 0 MPa were required to induce water release from the xylem matrix. Viability staining highlighted that water release from the xylem matrix was associated primarily with emptying of dead fibers. Refilling of the xylem matrix and vessels was detected in intact saplings when the canopy was bagged and stem water potential was close to 0 MPa, and in leafless saplings over the winter period. In conclusion, this study indicates that the bulk of water stored in the xylem matrix is released after the onset of vessel cavitation, and suggests that capillary water contributes to overall stem water storage under drought but is not used primarily for the prevention of drought-induced vessel cavitation in this species.


Asunto(s)
Fagaceae/metabolismo , Agua/metabolismo , Xilema/fisiología , Fagaceae/anatomía & histología , Microtomografía por Rayos X , Xilema/anatomía & histología , Xilema/metabolismo
17.
J Exp Bot ; 71(22): 7286-7300, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-33306796

RESUMEN

Drought decreases water transport capacity of leaves and limits gas exchange, which involves reduced leaf leaf hydraulic conductance (Kleaf) in both the xylem and outside-xylem pathways. Some literature suggests that grapevines are hyper-susceptible to drought-induced xylem embolism. We combined Kleaf and gas exchange measurements, micro-computed tomography of intact leaves, and spatially explicit modeling of the outside-xylem pathways to evaluate the role of vein embolism and Kleaf in the responses of two different grapevine cultivars to drought. Cabernet Sauvignon and Chardonnay exhibited similar vulnerabilities of Kleaf and gs to dehydration, decreasing substantially prior to leaf xylem embolism. Kleaf and gs decreased by 80% for both cultivars by Ψ leaf approximately -0.7 MPa and -1.2 MPa, respectively, while leaf xylem embolism initiated around Ψ leaf = -1.25 MPa in the midribs and little to no embolism was detected in minor veins even under severe dehydration for both cultivars. Modeling results indicated that reduced membrane permeability associated with a Casparian-like band in the leaf vein bundle sheath would explain declines in Kleaf of both cultivars. We conclude that during moderate water stress, changes in the outside-xylem pathways, rather than xylem embolism, are responsible for reduced Kleaf and gs. Understanding this mechanism could help to ensure adequate carbon capture and crop performance under drought.


Asunto(s)
Sequías , Embolia , Hojas de la Planta , Agua , Microtomografía por Rayos X , Xilema
18.
Am J Bot ; 107(8): 1177-1188, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32754914

RESUMEN

PREMISE: The young seedling life stage is critical for reforestation after disturbance and for species migration under climate change, yet little is known regarding their basic hydraulic function or vulnerability to drought. Here, we sought to characterize responses to desiccation including hydraulic vulnerability, xylem anatomical traits, and impacts on other stem tissues that contribute to hydraulic functioning. METHODS: Larix occidentalis, Pseudotsuga menziesii, and Pinus ponderosa (all ≤6 weeks old) were imaged using x-ray computed microtomography during desiccation to assess seedling biomechanical responses with concurrently measured hydraulic conductivity (ks ) and water potential (Ψ) to assess vulnerability to xylem embolism formation and other tissue damage. RESULTS: In non-stressed samples for all species, pith and cortical cells appeared circular and well hydrated, but they started to empty and deform with decreasing Ψ which resulted in cell tearing and eventual collapse. Despite the severity of this structural damage, the vascular cambium remained well hydrated even under the most severe drought. There were significant differences among species in vulnerability to xylem embolism formation, with 78% xylem embolism in L. occidentalis by Ψ of -2.1 MPa, but only 47.7% and 62.1% in P. ponderosa and P. menziesii at -4.27 and -6.73 MPa, respectively. CONCLUSIONS: Larix occidentalis seedlings appeared to be more susceptible to secondary xylem embolism compared to the other two species, but all three maintained hydration of the vascular cambium under severe stress, which could facilitate hydraulic recovery by regrowth of xylem when stress is relieved.


Asunto(s)
Pseudotsuga , Tracheophyta , Desecación , Sequías , Plantones , Agua , Xilema
19.
Plant Physiol ; 178(1): 148-162, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30042212

RESUMEN

The leaf intercellular airspace (IAS) is generally considered to have high conductance to CO2 diffusion relative to the liquid phase. While previous studies accounted for leaf-level variation in porosity and mesophyll thickness, they omitted 3D IAS traits that potentially influence IAS conductance (gIAS). Here, we reevaluated the standard equation for gIAS by incorporating tortuosity, lateral path lengthening, and IAS connectivity. We measured and spatially mapped these geometric IAS traits for 19 Bromeliaceae species with Crassulacean acid metabolism (CAM) or C3 photosynthetic pathways using x-ray microcomputed tomography imaging and a novel computational approach. We found substantial variation in porosity (0.04-0.73 m3 m-3), tortuosity (1.09-3.33 m2 m-2), lateral path lengthening (1.12-3.19 m m-1), and IAS connectivity (0.81-0.97 m2 m-2) across all bromeliad leaves. The revised gIAS model predicted significantly lower gIAS in CAM (0.01-0.19 mol m-2 s-1 bar-1) than in C3 (0.41-2.38 mol m-2 s-1 bar-1) plants due to a coordinated decline in these IAS traits. Our reevaluated equation also generally predicted lower gIAS values than the former one. Moreover, we observed high spatial heterogeneity in these IAS geometric traits throughout the mesophyll, especially within CAM leaves. Our data show that IAS traits that better capture the 3D complexity of leaves strongly influence gIAS and that the impact of the IAS on mesophyll conductance should be carefully considered with respect to leaf anatomy. We provide a simple function to estimate tortuosity and lateral path lengthening in the absence of access to imaging tools such as x-ray microcomputed tomography or other novel 3D image-processing techniques.


Asunto(s)
Bromeliaceae/metabolismo , Dióxido de Carbono/metabolismo , Células del Mesófilo/metabolismo , Hojas de la Planta/metabolismo , Algoritmos , Bromeliaceae/clasificación , Bromeliaceae/genética , Difusión , Fotosíntesis , Filogenia , Hojas de la Planta/anatomía & histología , Hojas de la Planta/citología , Porosidad , Especificidad de la Especie , Microtomografía por Rayos X
20.
Plant Physiol ; 178(4): 1584-1601, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30366978

RESUMEN

The influence of the dynamics of leaf hydraulic conductance (K leaf) diurnally and during dehydration on stomatal conductance and photosynthesis remains unclear. Using the model species Arabidopsis (Arabidopsis thaliana ecotype Columbia-0), we applied a multitiered approach including physiological measurements, high-resolution x-ray microcomputed tomography, and modeling at a range of scales to characterize (1) K leaf decline during dehydration; (2) its basis in the hydraulic conductances of leaf xylem and outside-xylem pathways (K ox); (3) the dependence of its dynamics on irradiance; (4) its impact on diurnal patterns of stomatal conductance and photosynthetic rate; and (5) its influence on gas exchange and survival under simulated drought regimes. Arabidopsis leaves showed strong vulnerability to dehydration diurnally in both gas exchange and hydraulic conductance, despite lack of xylem embolism or conduit collapse above the turgor loss point, indicating a pronounced sensitivity of K ox to dehydration. K leaf increased under higher irradiance in well-hydrated leaves across the full range of water potential, but no shift in K leaf vulnerability was observed. Modeling indicated that responses to dehydration and irradiance are likely attributable to changes in membrane permeability and that a dynamic K ox would contribute strongly to stomatal closure, improving performance, survival, and efficient water use during drought. These findings for Columbia-0 provide a baseline for assessing variation across genotypes in hydraulic traits and their influence on gas exchange during dehydration.


Asunto(s)
Arabidopsis/fisiología , Dióxido de Carbono/metabolismo , Hojas de la Planta/fisiología , Ritmo Circadiano , Deshidratación , Sequías , Modelos Biológicos , Fotosíntesis , Microtomografía por Rayos X , Xilema/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA