RESUMEN
The transcriptional programs that guide lymphocyte differentiation depend on the precise expression and timing of transcription factors (TFs). The TF BACH2 is essential for T and B lymphocytes and is associated with an archetypal super-enhancer (SE). Single-nucleotide variants in the BACH2 locus are associated with several autoimmune diseases, but BACH2 mutations that cause Mendelian monogenic primary immunodeficiency have not previously been identified. Here we describe a syndrome of BACH2-related immunodeficiency and autoimmunity (BRIDA) that results from BACH2 haploinsufficiency. Affected subjects had lymphocyte-maturation defects that caused immunoglobulin deficiency and intestinal inflammation. The mutations disrupted protein stability by interfering with homodimerization or by causing aggregation. We observed analogous lymphocyte defects in Bach2-heterozygous mice. More generally, we observed that genes that cause monogenic haploinsufficient diseases were substantially enriched for TFs and SE architecture. These findings reveal a previously unrecognized feature of SE architecture in Mendelian diseases of immunity: heterozygous mutations in SE-regulated genes identified by whole-exome/genome sequencing may have greater significance than previously recognized.
Asunto(s)
Enfermedades Autoinmunes/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Síndromes de Inmunodeficiencia/genética , Corticoesteroides/uso terapéutico , Adulto , Enfermedades Autoinmunes/complicaciones , Colitis/complicaciones , Colitis/genética , Colitis/patología , Femenino , Fiebre/complicaciones , Fiebre/tratamiento farmacológico , Fiebre/genética , Haploinsuficiencia , Heterocigoto , Humanos , Síndromes de Inmunodeficiencia/complicaciones , Linfopenia/complicaciones , Linfopenia/genética , Masculino , Persona de Mediana Edad , Mutación , Pancitopenia/complicaciones , Pancitopenia/tratamiento farmacológico , Pancitopenia/genética , Linaje , Polimorfismo de Nucleótido Simple , Recurrencia , Infecciones del Sistema Respiratorio/complicaciones , Infecciones del Sistema Respiratorio/diagnóstico por imagen , Infecciones del Sistema Respiratorio/genética , Esplenomegalia/complicaciones , Esplenomegalia/genética , Síndrome , Tomografía Computarizada por Rayos X , Adulto JovenRESUMEN
The genetics of complex disease produce alterations in the molecular interactions of cellular pathways whose collective effect may become clear through the organized structure of molecular networks. To characterize molecular systems associated with late-onset Alzheimer's disease (LOAD), we constructed gene-regulatory networks in 1,647 postmortem brain tissues from LOAD patients and nondemented subjects, and we demonstrate that LOAD reconfigures specific portions of the molecular interaction structure. Through an integrative network-based approach, we rank-ordered these network structures for relevance to LOAD pathology, highlighting an immune- and microglia-specific module that is dominated by genes involved in pathogen phagocytosis, contains TYROBP as a key regulator, and is upregulated in LOAD. Mouse microglia cells overexpressing intact or truncated TYROBP revealed expression changes that significantly overlapped the human brain TYROBP network. Thus the causal network structure is a useful predictor of response to gene perturbations and presents a framework to test models of disease mechanisms underlying LOAD.
Asunto(s)
Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Redes Reguladoras de Genes , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Teorema de Bayes , Encéfalo/patología , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Microglía/metabolismoRESUMEN
Cytidine triphosphate synthase 1 (CTPS1) is necessary for an effective immune response, as revealed by severe immunodeficiency in CTPS1-deficient individuals [E. Martin et al], [Nature] [510], [288-292] ([2014]). CTPS1 expression is up-regulated in activated lymphocytes to expand CTP pools [E. Martin et al], [Nature] [510], [288-292] ([2014]), satisfying increased demand for nucleic acid and lipid synthesis [L. D. Fairbanks, M. Bofill, K. Ruckemann, H. A. Simmonds], [J. Biol. Chem. ] [270], [29682-29689] ([1995]). Demand for CTP in other tissues is met by the CTPS2 isoform and nucleoside salvage pathways [E. Martin et al], [Nature] [510], [288-292] ([2014]). Selective inhibition of the proliferative CTPS1 isoform is therefore desirable in the treatment of immune disorders and lymphocyte cancers, but little is known about differences in regulation of the isoforms or mechanisms of known inhibitors. We show that CTP regulates both isoforms by binding in two sites that clash with substrates. CTPS1 is less sensitive to CTP feedback inhibition, consistent with its role in increasing CTP levels in proliferation. We also characterize recently reported small-molecule inhibitors, both CTPS1 selective and nonselective. Cryo-electron microscopy (cryo-EM) structures reveal these inhibitors mimic CTP binding in one inhibitory site, where a single amino acid substitution explains selectivity for CTPS1. The inhibitors bind to CTPS assembled into large-scale filaments, which for CTPS1 normally represents a hyperactive form of the enzyme [E. M. Lynch et al], [Nat. Struct. Mol. Biol.] [24], [507-514] ([2017]). This highlights the utility of cryo-EM in drug discovery, particularly for cases in which targets form large multimeric assemblies not amenable to structure determination by other techniques. Both inhibitors also inhibit the proliferation of human primary T cells. The mechanisms of selective inhibition of CTPS1 lay the foundation for the design of immunosuppressive therapies.
Asunto(s)
Ligasas de Carbono-Nitrógeno/metabolismo , Isoformas de Proteínas/metabolismo , Proliferación Celular/fisiología , Humanos , Síndromes de Inmunodeficiencia/metabolismo , Linfocitos T/metabolismoRESUMEN
TYK2 is a member of the JAK family of kinases and a key mediator of IL-12, IL-23, and type I interferon signaling. These cytokines have been implicated in the pathogenesis of multiple inflammatory and autoimmune diseases such as psoriasis, rheumatoid arthritis, lupus, and inflammatory bowel diseases. Supported by compelling data from human genetic association studies, TYK2 inhibition is an attractive therapeutic strategy for these diseases. Herein, we report the discovery of a series of highly selective catalytic site TYK2 inhibitors designed using FEP+ and structurally enabled design starting from a virtual screen hit. We highlight the structure-based optimization to identify a lead candidate 30, a potent cellular TYK2 inhibitor with excellent selectivity, pharmacokinetic properties, and in vivo efficacy in a mouse psoriasis model.
Asunto(s)
Psoriasis , TYK2 Quinasa , Animales , Humanos , Quinasas Janus , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Psoriasis/tratamiento farmacológico , RoedoresRESUMEN
BACKGROUND: Studies of monogenic gastrointestinal diseases have revealed molecular pathways critical to gut homeostasis and enabled the development of targeted therapies. METHODS: We studied 11 patients with abdominal pain and diarrhea caused by early-onset protein-losing enteropathy with primary intestinal lymphangiectasia, edema due to hypoproteinemia, malabsorption, and less frequently, bowel inflammation, recurrent infections, and angiopathic thromboembolic disease; the disorder followed an autosomal recessive pattern of inheritance. Whole-exome sequencing was performed to identify gene variants. We evaluated the function of CD55 in patients' cells, which we confirmed by means of exogenous induction of expression of CD55. RESULTS: We identified homozygous loss-of-function mutations in the gene encoding CD55 (decay-accelerating factor), which lead to loss of protein expression. Patients' T lymphocytes showed increased complement activation causing surface deposition of complement and the generation of soluble C5a. Costimulatory function and cytokine modulation by CD55 were defective. Genetic reconstitution of CD55 or treatment with a complement-inhibitory therapeutic antibody reversed abnormal complement activation. CONCLUSIONS: CD55 deficiency with hyperactivation of complement, angiopathic thrombosis, and protein-losing enteropathy (the CHAPLE syndrome) is caused by abnormal complement activation due to biallelic loss-of-function mutations in CD55. (Funded by the National Institute of Allergy and Infectious Diseases and others.).
Asunto(s)
Antígenos CD55/genética , Activación de Complemento/genética , Proteínas del Sistema Complemento/metabolismo , Mutación , Enteropatías Perdedoras de Proteínas/genética , Trombosis/genética , Antígenos CD55/sangre , Niño , Preescolar , Activación de Complemento/efectos de los fármacos , Inactivadores del Complemento/farmacología , Femenino , Homocigoto , Humanos , Inmunoglobulina A/sangre , Lactante , Intestino Delgado/patología , Masculino , Linaje , Enteropatías Perdedoras de Proteínas/complicaciones , Estadísticas no Paramétricas , Síndrome , Linfocitos T/metabolismoRESUMEN
BACKGROUND: Advances in genomics have facilitated the discovery of monogenic disorders in patients with unique gastro-intestinal phenotypes. Syndromic diarrhea, also called tricho-hepato-enteric (THE) syndrome, results from deleterious mutations in SKIV2L or TTC37 genes. The main features of this disorder are intractable diarrhea, abnormal hair, facial dysmorphism, immunodeficiency and liver disease. AIM: To report on a patient with THE syndrome and present the genetic analysis that facilitated diagnosis. METHODS: Whole-exome sequencing (WES) was performed in a 4-month-old female with history of congenital diarrhea and severe failure to thrive but without hair anomalies or dysmorphism. Since the parents were first-degree cousins, the analysis focused on an autosomal recessive model. Sanger sequencing was used to validate suspected variants. Mutated protein structure was modeled to assess the effect of the mutation on protein function. RESULTS: We identified an autosomal recessive C.1891G > A missense mutation (NM_006929) in SKIV2L gene that was previously described only in a compound heterozygous state as causing THE syndrome. The mutation was determined to be deleterious in multiple prediction models. Protein modeling suggested that the mutation has the potential to cause structural destabilization of SKIV2L, either through conformational changes, interference with the protein's packing, or changes at the protein's interface. CONCLUSIONS: THE syndrome can present with a broad range of clinical features in the neonatal period. WES is an important diagnostic tool in patients with congenital diarrhea and can facilitate diagnosis of various diseases presenting with atypical features.
Asunto(s)
ADN Helicasas/genética , Diarrea Infantil/genética , Retardo del Crecimiento Fetal/genética , Enfermedades del Cabello/genética , Mutación Missense , Diarrea Infantil/diagnóstico , Facies , Femenino , Retardo del Crecimiento Fetal/diagnóstico , Marcadores Genéticos , Enfermedades del Cabello/diagnóstico , Humanos , Lactante , Secuenciación del ExomaRESUMEN
Germline loss-of-function mutations in the transcription factor signal transducer and activator of transcription 3 (STAT3) cause immunodeficiency, whereas somatic gain-of-function mutations in STAT3 are associated with large granular lymphocytic leukemic, myelodysplastic syndrome, and aplastic anemia. Recently, germline mutations in STAT3 have also been associated with autoimmune disease. Here, we report on 13 individuals from 10 families with lymphoproliferation and early-onset solid-organ autoimmunity associated with 9 different germline heterozygous mutations in STAT3. Patients exhibited a variety of clinical features, with most having lymphadenopathy, autoimmune cytopenias, multiorgan autoimmunity (lung, gastrointestinal, hepatic, and/or endocrine dysfunction), infections, and short stature. Functional analyses demonstrate that these mutations confer a gain-of-function in STAT3 leading to secondary defects in STAT5 and STAT1 phosphorylation and the regulatory T-cell compartment. Treatment targeting a cytokine pathway that signals through STAT3 led to clinical improvement in 1 patient, suggesting a potential therapeutic option for such patients. These results suggest that there is a broad range of autoimmunity caused by germline STAT3 gain-of-function mutations, and that hematologic autoimmunity is a major component of this newly described disorder. Some patients for this study were enrolled in a trial registered at www.clinicaltrials.gov as #NCT00001350.
Asunto(s)
Enfermedades Autoinmunes/genética , Enfermedades Genéticas Congénitas/genética , Trastornos Linfoproliferativos/genética , Factor de Transcripción STAT3/genética , Adolescente , Adulto , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Niño , Preescolar , Femenino , Enfermedades Genéticas Congénitas/inmunología , Enfermedades Genéticas Congénitas/patología , Humanos , Lactante , Trastornos Linfoproliferativos/inmunología , Trastornos Linfoproliferativos/patología , Masculino , Mutación , Fosforilación/genética , Fosforilación/inmunología , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/inmunología , Factor de Transcripción STAT3/inmunología , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patologíaRESUMEN
Overexpression of sirtuins (NAD(+)-dependent protein deacetylases) has been reported to increase lifespan in budding yeast (Saccharomyces cerevisiae), Caenorhabditis elegans and Drosophila melanogaster. Studies of the effects of genes on ageing are vulnerable to confounding effects of genetic background. Here we re-examined the reported effects of sirtuin overexpression on ageing and found that standardization of genetic background and the use of appropriate controls abolished the apparent effects in both C. elegans and Drosophila. In C. elegans, outcrossing of a line with high-level sir-2.1 overexpression abrogated the longevity increase, but did not abrogate sir-2.1 overexpression. Instead, longevity co-segregated with a second-site mutation affecting sensory neurons. Outcrossing of a line with low-copy-number sir-2.1 overexpression also abrogated longevity. A Drosophila strain with ubiquitous overexpression of dSir2 using the UAS-GAL4 system was long-lived relative to wild-type controls, as previously reported, but was not long-lived relative to the appropriate transgenic controls, and nor was a new line with stronger overexpression of dSir2. These findings underscore the importance of controlling for genetic background and for the mutagenic effects of transgene insertions in studies of genetic effects on lifespan. The life-extending effect of dietary restriction on ageing in Drosophila has also been reported to be dSir2 dependent. We found that dietary restriction increased fly lifespan independently of dSir2. Our findings do not rule out a role for sirtuins in determination of metazoan lifespan, but they do cast doubt on the robustness of the previously reported effects of sirtuins on lifespan in C. elegans and Drosophila.
Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Histona Desacetilasas/genética , Longevidad/fisiología , Sirtuinas/genética , Envejecimiento/genética , Envejecimiento/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Restricción Calórica , Cruzamientos Genéticos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Expresión Génica , Histona Desacetilasas/metabolismo , Longevidad/genética , Masculino , ARN Mensajero/análisis , ARN Mensajero/genética , Sirtuinas/metabolismoRESUMEN
PURPOSE: Combined immunodeficiency (CID) presents a unique challenge to clinicians. Two patients presented with the prior clinical diagnosis of common variable immunodeficiency (CVID) disorder marked by an early age of presentation, opportunistic infections, and persistent lymphopenia. Due to the presence of atypical clinical features, next generation sequencing was applied documenting RAG deficiency in both patients. METHODS: Two different genetic analysis techniques were applied in these patients including whole exome sequencing in one patient and the use of a gene panel designed to target genes known to cause primary immunodeficiency disorders (PIDD) in a second patient. Sanger dideoxy sequencing was used to confirm RAG1 mutations in both patients. RESULTS: Two young adults with a history of recurrent bacterial sinopulmonary infections, viral infections, and autoimmune disease as well as progressive hypogammaglobulinemia, abnormal antibody responses, lymphopenia and a prior diagnosis of CVID disorder were evaluated. Compound heterozygous mutations in RAG1 (1) c256_257delAA, p86VfsX32 and (2) c1835A>G, pH612R were documented in one patient. Compound heterozygous mutations in RAG1 (1) c.1566G>T, p.W522C and (2) c.2689C>T, p. R897X) were documented in a second patient post-mortem following a fatal opportunistic infection. CONCLUSION: Astute clinical judgment in the evaluation of patients with PIDD is necessary. Atypical clinical findings such as early onset, granulomatous disease, or opportunistic infections should support the consideration of atypical forms of late onset CID secondary to RAG deficiency. Next generation sequencing approaches provide powerful tools in the investigation of these patients and may expedite definitive treatments.
Asunto(s)
Inmunodeficiencia Variable Común/genética , Proteínas de Homeodominio/genética , Mutación , Agammaglobulinemia/diagnóstico , Agammaglobulinemia/etiología , Biopsia , Preescolar , Inmunodeficiencia Variable Común/complicaciones , Inmunodeficiencia Variable Común/diagnóstico , Análisis Mutacional de ADN , Resultado Fatal , Femenino , Humanos , Inmunohistoquímica , Enfermedades Pulmonares Intersticiales/diagnóstico , Enfermedades Pulmonares Intersticiales/etiología , Linfopenia/diagnóstico , Linfopenia/etiología , Tomografía Computarizada por Rayos X , Adulto JovenRESUMEN
Using expression profiles from postmortem prefrontal cortex samples of 624 dementia patients and non-demented controls, we investigated global disruptions in the co-regulation of genes in two neurodegenerative diseases, late-onset Alzheimer's disease (AD) and Huntington's disease (HD). We identified networks of differentially co-expressed (DC) gene pairs that either gained or lost correlation in disease cases relative to the control group, with the former dominant for both AD and HD and both patterns replicating in independent human cohorts of AD and aging. When aligning networks of DC patterns and physical interactions, we identified a 242-gene subnetwork enriched for independent AD/HD signatures. This subnetwork revealed a surprising dichotomy of gained/lost correlations among two inter-connected processes, chromatin organization and neural differentiation, and included DNA methyltransferases, DNMT1 and DNMT3A, of which we predicted the former but not latter as a key regulator. To validate the inter-connection of these two processes and our key regulator prediction, we generated two brain-specific knockout (KO) mice and show that Dnmt1 KO signature significantly overlaps with the subnetwork (P = 3.1 × 10(-12)), while Dnmt3a KO signature does not (P = 0.017).
Asunto(s)
Enfermedad de Alzheimer/genética , Redes Reguladoras de Genes , Enfermedad de Huntington/genética , Corteza Prefrontal/metabolismo , Enfermedad de Alzheimer/patología , Animales , Autopsia , Estudios de Casos y Controles , Cromatina/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Demencia/patología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Enfermedad de Huntington/patología , Ratones , Ratones Noqueados , Corteza Prefrontal/patología , Reproducibilidad de los ResultadosRESUMEN
BACKGROUND: Identifying genetic syndromes that lead to significant atopic disease can open new pathways for investigation and intervention in allergy. OBJECTIVE: We sought to define a genetic syndrome of severe atopy, increased serum IgE levels, immune deficiency, autoimmunity, and motor and neurocognitive impairment. METHODS: Eight patients from 2 families with similar syndromic features were studied. Thorough clinical evaluations, including brain magnetic resonance imaging and sensory evoked potentials, were performed. Peripheral lymphocyte flow cytometry, antibody responses, and T-cell cytokine production were measured. Whole-exome sequencing was performed to identify disease-causing mutations. Immunoblotting, quantitative RT-PCR, enzymatic assays, nucleotide sugar, and sugar phosphate analyses, along with matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry of glycans, were used to determine the molecular consequences of the mutations. RESULTS: Marked atopy and autoimmunity were associated with increased T(H)2 and T(H)17 cytokine production by CD4(+) T cells. Bacterial and viral infection susceptibility were noted along with T-cell lymphopenia, particularly of CD8(+) T cells, and reduced memory B-cell numbers. Apparent brain hypomyelination resulted in markedly delayed evoked potentials and likely contributed to neurologic abnormalities. Disease segregated with novel autosomal recessive mutations in a single gene, phosphoglucomutase 3 (PGM3). Although PGM3 protein expression was variably diminished, impaired function was demonstrated by decreased enzyme activity and reduced uridine diphosphate-N-acetyl-D-glucosamine, along with decreased O- and N-linked protein glycosylation in patients' cells. These results define a new congenital disorder of glycosylation. CONCLUSIONS: Autosomal recessive hypomorphic PGM3 mutations underlie a disorder of severe atopy, immune deficiency, autoimmunity, intellectual disability, and hypomyelination.
Asunto(s)
Enfermedades Autoinmunes/genética , Trastornos del Conocimiento/genética , Inmunodeficiencia Variable Común/genética , Enfermedades Genéticas Congénitas/genética , Hipersensibilidad/genética , Mutación , Fosfoglucomutasa/genética , Enfermedades Autoinmunes/enzimología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Linfocitos B/enzimología , Linfocitos B/inmunología , Linfocitos B/patología , Linfocitos T CD8-positivos/enzimología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Niño , Preescolar , Trastornos del Conocimiento/enzimología , Trastornos del Conocimiento/inmunología , Trastornos del Conocimiento/patología , Inmunodeficiencia Variable Común/enzimología , Inmunodeficiencia Variable Común/inmunología , Inmunodeficiencia Variable Común/patología , Familia , Femenino , Enfermedades Genéticas Congénitas/enzimología , Enfermedades Genéticas Congénitas/inmunología , Enfermedades Genéticas Congénitas/patología , Humanos , Hipersensibilidad/enzimología , Hipersensibilidad/inmunología , Hipersensibilidad/patología , Inmunoglobulina E/genética , Inmunoglobulina E/inmunología , Masculino , Linaje , Fosfoglucomutasa/inmunología , Fosfoglucomutasa/metabolismo , Células Th17/enzimología , Células Th17/inmunología , Células Th17/patología , Células Th2/enzimología , Células Th2/inmunología , Células Th2/patología , Adulto JovenRESUMEN
TYK2 is a key mediator of IL12, IL23, and type I interferon signaling, and these cytokines have been implicated in the pathogenesis of multiple inflammatory and autoimmune diseases such as psoriasis, rheumatoid arthritis, lupus, and inflammatory bowel diseases. Supported by compelling data from human genome-wide association studies and clinical results, TYK2 inhibition through small molecules is an attractive therapeutic strategy to treat these diseases. Herein, we report the discovery of a series of highly selective pseudokinase (Janus homology 2, JH2) domain inhibitors of TYK2 enzymatic activity. A computationally enabled design strategy, including the use of FEP+, was instrumental in identifying a pyrazolo-pyrimidine core. We highlight the utility of computational physics-based predictions used to optimize this series of molecules to identify the development candidate 30, a potent, exquisitely selective cellular TYK2 inhibitor that is currently in Phase 2 clinical trials for the treatment of psoriasis and psoriatic arthritis.
Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Psoriasis , Humanos , TYK2 Quinasa , Estudio de Asociación del Genoma Completo , Enfermedades Autoinmunes/tratamiento farmacológico , Psoriasis/tratamiento farmacológicoRESUMEN
Serum tryptase is a biomarker used to aid in the identification of certain myeloid neoplasms, most notably systemic mastocytosis, where basal serum tryptase (BST) levels >20 ng/mL are a minor criterion for diagnosis. Although clonal myeloid neoplasms are rare, the common cause for elevated BST levels is the genetic trait hereditary α-tryptasemia (HαT) caused by increased germline TPSAB1 copy number. To date, the precise structural variation and mechanism(s) underlying elevated BST in HαT and the general clinical utility of tryptase genotyping, remain undefined. Through cloning, long-read sequencing, and assembling of the human tryptase locus from an individual with HαT, and validating our findings in vitro and in silico, we demonstrate that BST elevations arise from overexpression of replicated TPSAB1 loci encoding canonical α-tryptase protein owing to coinheritance of a linked overactive promoter element. Modeling BST levels based on TPSAB1 replication number, we generate new individualized clinical reference values for the upper limit of normal. Using this personalized laboratory medicine approach, we demonstrate the clinical utility of tryptase genotyping, finding that in the absence of HαT, BST levels >11.4 ng/mL frequently identify indolent clonal mast cell disease. Moreover, substantial BST elevations (eg, >100 ng/mL), which would ordinarily prompt bone marrow biopsy, can result from TPSAB1 replications alone and thus be within normal limits for certain individuals with HαT.
Asunto(s)
Mastocitosis , Trastornos Mieloproliferativos , Humanos , Triptasas/genética , Mastocitos , Valores de Referencia , Procedimientos Innecesarios , Mastocitosis/diagnóstico , Trastornos Mieloproliferativos/patologíaRESUMEN
Insulin/IGF-1 signaling controls metabolism, stress resistance and aging in Caenorhabditis elegans by regulating the activity of the DAF-16/FoxO transcription factor (TF). However, the function of DAF-16 and the topology of the transcriptional network that it crowns remain unclear. Using chromatin profiling by DNA adenine methyltransferase identification (DamID), we identified 907 genes that are bound by DAF-16. These were enriched for genes showing DAF-16-dependent upregulation in long-lived daf-2 insulin/IGF-1 receptor mutants (P=1.4e(-11)). Cross-referencing DAF-16 targets with these upregulated genes (daf-2 versus daf-16; daf-2) identified 65 genes that were DAF-16 regulatory targets. These 65 were enriched for signaling genes, including known determinants of longevity, but not for genes specifying somatic maintenance functions (e.g. detoxification, repair). This suggests that DAF-16 acts within a relatively small transcriptional subnetwork activating (but not suppressing) other regulators of stress resistance and aging, rather than directly regulating terminal effectors of longevity. For most genes bound by DAF-16::DAM, transcriptional regulation by DAF-16 was not detected, perhaps reflecting transcriptionally non-functional TF 'parking sites'. This study demonstrates the efficacy of DamID for chromatin profiling in C. elegans.
Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica/métodos , Longevidad/fisiología , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Cromatina/metabolismo , Metilación de ADN , Regulación del Desarrollo de la Expresión Génica , Longevidad/genética , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
The DAF-2 insulin/IGF-1 receptor regulates development, metabolism, and aging in the nematode Caenorhabditis elegans. However, complex differences among daf-2 alleles complicate analysis of this gene. We have employed epistasis analysis, transcript profile analysis, mutant sequence analysis, and homology modeling of mutant receptors to understand this complexity. We define an allelic series of nonconditional daf-2 mutants, including nonsense and deletion alleles, and a putative null allele, m65. The most severe daf-2 alleles show incomplete suppression by daf-18(0) and daf-16(0) and have a range of effects on early development. Among weaker daf-2 alleles there exist distinct mutant classes that differ in epistatic interactions with mutations in other genes. Mutant sequence analysis (including 11 newly sequenced alleles) reveals that class 1 mutant lesions lie only in certain extracellular regions of the receptor, while class 2 (pleiotropic) and nonconditional missense mutants have lesions only in the ligand-binding pocket of the receptor ectodomain or the tyrosine kinase domain. Effects of equivalent mutations on the human insulin receptor suggest an altered balance of intracellular signaling in class 2 alleles. These studies consolidate and extend our understanding of the complex genetics of daf-2 and its underlying molecular biology.
Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Insulina/genética , Receptor IGF Tipo 1/genética , Receptor de Insulina/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Datos de Secuencia Molecular , Familia de Multigenes , Mutación , FilogeniaRESUMEN
BACKGROUND: Although high-throughput genotyping arrays have made whole-genome association studies (WGAS) feasible, only a small proportion of SNPs in the human genome are actually surveyed in such studies. In addition, various SNP arrays assay different sets of SNPs, which leads to challenges in comparing results and merging data for meta-analyses. Genome-wide imputation of untyped markers allows us to address these issues in a direct fashion. METHODS: 384 Caucasian American liver donors were genotyped using Illumina 650Y (Ilmn650Y) arrays, from which we also derived genotypes from the Ilmn317K array. On these data, we compared two imputation methods: MACH and BEAGLE. We imputed 2.5 million HapMap Release22 SNPs, and conducted GWAS on approximately 40,000 liver mRNA expression traits (eQTL analysis). In addition, 200 Caucasian American and 200 African American subjects were genotyped using the Affymetrix 500 K array plus a custom 164 K fill-in chip. We then imputed the HapMap SNPs and quantified the accuracy by randomly masking observed SNPs. RESULTS: MACH and BEAGLE perform similarly with respect to imputation accuracy. The Ilmn650Y results in excellent imputation performance, and it outperforms Affx500K or Ilmn317K sets. For Caucasian Americans, 90% of the HapMap SNPs were imputed at 98% accuracy. As expected, imputation of poorly tagged SNPs (untyped SNPs in weak LD with typed markers) was not as successful. It was more challenging to impute genotypes in the African American population, given (1) shorter LD blocks and (2) admixture with Caucasian populations in this population. To address issue (2), we pooled HapMap CEU and YRI data as an imputation reference set, which greatly improved overall performance. The approximate 40,000 phenotypes scored in these populations provide a path to determine empirically how the power to detect associations is affected by the imputation procedures. That is, at a fixed false discovery rate, the number of cis-eQTL discoveries detected by various methods can be interpreted as their relative statistical power in the GWAS. In this study, we find that imputation offer modest additional power (by 4%) on top of either Ilmn317K or Ilmn650Y, much less than the power gain from Ilmn317K to Ilmn650Y (13%). CONCLUSION: Current algorithms can accurately impute genotypes for untyped markers, which enables researchers to pool data between studies conducted using different SNP sets. While genotyping itself results in a small error rate (e.g. 0.5%), imputing genotypes is surprisingly accurate. We found that dense marker sets (e.g. Ilmn650Y) outperform sparser ones (e.g. Ilmn317K) in terms of imputation yield and accuracy. We also noticed it was harder to impute genotypes for African American samples, partially due to population admixture, although using a pooled reference boosts performance. Interestingly, GWAS carried out using imputed genotypes only slightly increased power on top of assayed SNPs. The reason is likely due to adding more markers via imputation only results in modest gain in genetic coverage, but worsens the multiple testing penalties. Furthermore, cis-eQTL mapping using dense SNP set derived from imputation achieves great resolution, and locate associate peak closer to causal variants than conventional approach.
Asunto(s)
Genoma Humano , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Polimorfismo de Nucleótido Simple , Negro o Afroamericano/genética , Algoritmos , Mapeo Cromosómico/métodos , Marcadores Genéticos , Humanos , Hígado/metabolismo , Modelos Estadísticos , ARN Mensajero/metabolismo , Sensibilidad y Especificidad , Población Blanca/genéticaRESUMEN
Interleukin-2-inducible T cell kinase (ITK) is critical for T cell signaling and cytotoxicity, and control of Epstein-Barr virus (EBV). We identified a patient with a novel homozygous missense mutation (D540N) in a highly conserved residue in the kinase domain of ITK who presented with EBV-positive lymphomatoid granulomatosis. She was treated with interferon and chemotherapy and her disease went into remission; however, she has persistent elevation of EBV DNA in the blood, low CD4 T cells, low NK cells, and nearly absent iNKT cells. Molecular modeling predicts that the mutation increases the flexibility of the ITK kinase domain impairing phosphorylation of the protein. Stimulation of her T cells resulted in reduced phosphorylation of ITK, PLCγ, and PKC. The CD8 T cells were moderately impaired for cytotoxicity and degranulation. Importantly, addition of magnesium to her CD8 T cells in vitro restored cytotoxicity and degranulation to levels similar to controls. Supplemental magnesium in patients with mutations in another protein important for T cell signaling, MAGT1, was reported to restore EBV-specific cytotoxicity. Our findings highlight the critical role of ITK for T cell activation and suggest the potential for supplemental magnesium to treat patients with ITK deficiency.
Asunto(s)
Células Sanguíneas/inmunología , Células Sanguíneas/metabolismo , Susceptibilidad a Enfermedades , Magnesio/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Adulto , Análisis Mutacional de ADN , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/virología , Femenino , Homocigoto , Humanos , Granulomatosis Linfomatoide/diagnóstico , Granulomatosis Linfomatoide/etiología , Mutación Missense , Dominios y Motivos de Interacción de Proteínas/genética , Proteínas Tirosina Quinasas/química , Relación Estructura-Actividad , Secuenciación del ExomaRESUMEN
Phosphatidylinositol 3-kinase-gamma (PI3Kγ) is highly expressed in leukocytes and is an attractive drug target for immune modulation. Different experimental systems have led to conflicting conclusions regarding inflammatory and anti-inflammatory functions of PI3Kγ. Here, we report a human patient with bi-allelic, loss-of-function mutations in PIK3CG resulting in absence of the p110γ catalytic subunit of PI3Kγ. She has a history of childhood-onset antibody defects, cytopenias, and T lymphocytic pneumonitis and colitis, with reduced peripheral blood memory B, memory CD8+ T, and regulatory T cells and increased CXCR3+ tissue-homing CD4 T cells. PI3Kγ-deficient macrophages and monocytes produce elevated inflammatory IL-12 and IL-23 in a GSK3α/ß-dependent manner upon TLR stimulation. Pik3cg-deficient mice recapitulate major features of human disease after exposure to natural microbiota through co-housing with pet-store mice. Together, our results emphasize the physiological importance of PI3Kγ in restraining inflammation and promoting appropriate adaptive immune responses in both humans and mice.
Asunto(s)
Inmunidad Adaptativa/inmunología , Fosfatidilinositol 3-Quinasa Clase Ib/inmunología , Síndromes de Inmunodeficiencia/inmunología , Inflamación/inmunología , Microbiota/inmunología , Inmunidad Adaptativa/genética , Animales , Células Cultivadas , Fosfatidilinositol 3-Quinasa Clase Ib/deficiencia , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/metabolismo , Inflamación/genética , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
Phenome-wide association studies (PheWAS) have been proposed as a possible aid in drug development through elucidating mechanisms of action, identifying alternative indications, or predicting adverse drug events (ADEs). Here, we select 25 single nucleotide polymorphisms (SNPs) linked through genome-wide association studies (GWAS) to 19 candidate drug targets for common disease indications. We interrogate these SNPs by PheWAS in four large cohorts with extensive health information (23andMe, UK Biobank, FINRISK, CHOP) for association with 1683 binary endpoints in up to 697,815 individuals and conduct meta-analyses for 145 mapped disease endpoints. Our analyses replicate 75% of known GWAS associations (P < 0.05) and identify nine study-wide significant novel associations (of 71 with FDR < 0.1). We describe associations that may predict ADEs, e.g., acne, high cholesterol, gout, and gallstones with rs738409 (p.I148M) in PNPLA3 and asthma with rs1990760 (p.T946A) in IFIH1. Our results demonstrate PheWAS as a powerful addition to the toolkit for drug discovery.