Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurooncol ; 143(3): 417-428, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31115870

RESUMEN

PURPOSE: Glioblastoma (GBM) is the most aggressive adult brain cancer, with a 15 month median survivorship attributed to the existence of treatment-refractory brain tumor initiating cells (BTICs). In order to better understand the mechanisms regulating the tumorigenic properties of this population, we studied the role of the polycomb group member BMI1 in our patient-derived GBM BTICs and its relationship with CD133, a well-established marker of BTICs. METHODS: Using gain and loss-of-function studies for Bmi1 in neural stem cells (NSCs) and patient-derived GBM BTICs respectively, we assessed in vitro self-renewal and in vivo tumor formation in these two cell populations. We further explored the BMI1 transcriptional regulatory network through RNA sequencing of different GBM BTIC populations that were knocked down for Bmi1. RESULTS: There is a differential role of BMI1 in CD133-positive cells, notably involving cell metabolism. In addition, we identified pivotal targets downstream of BMI1 in CD133+ cells such as integrin alpha 2 (ITGA2), that may contribute to regulating GBM stem cell properties. CONCLUSIONS: Our work sheds light on the association of three genes with CD133-BMI1 circuitry, their importance as downstream effectors of the BMI1 signalling pathway, and their potential as future targets for tackling GBM treatment-resistant cell populations.


Asunto(s)
Antígeno AC133/metabolismo , Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Glioblastoma/patología , Células Madre Neoplásicas/patología , Complejo Represivo Polycomb 1/metabolismo , Antígeno AC133/genética , Animales , Apoptosis , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proliferación Celular , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/metabolismo , Complejo Represivo Polycomb 1/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
2.
J Paediatr Child Health ; 59(10): 1183, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37644762
3.
Acta Neuropathol ; 134(6): 923-940, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28766011

RESUMEN

Brain metastases (BM) are the most common brain tumor in adults and are a leading cause of cancer mortality. Metastatic lesions contain subclones derived from their primary lesion, yet their functional characterization is limited by a paucity of preclinical models accurately recapitulating the metastatic cascade, emphasizing the need for a novel approach to BM and their treatment. We identified a unique subset of stem-like cells from primary human patient brain metastases, termed brain metastasis-initiating cells (BMICs). We now establish a BMIC patient-derived xenotransplantation (PDXT) model as an investigative tool to comprehensively interrogate human BM. Using both in vitro and in vivo RNA interference screens of these BMIC models, we identified SPOCK1 and TWIST2 as essential BMIC regulators. SPOCK1 in particular is a novel regulator of BMIC self-renewal, modulating tumor initiation and metastasis from the lung to the brain. A prospective cohort of primary lung cancer specimens showed that SPOCK1 was overexpressed only in patients who ultimately developed BM. Protein-protein interaction network mapping between SPOCK1 and TWIST2 identified novel pathway interactors with significant prognostic value in lung cancer patients. Of these genes, INHBA, a TGF-ß ligand found mutated in lung adenocarcinoma, showed reduced expression in BMICs with knockdown of SPOCK1. In conclusion, we have developed a useful preclinical model of BM, which has served to identify novel putative BMIC regulators, presenting potential therapeutic targets that block the metastatic process, and transform a uniformly fatal systemic disease into a locally controlled and eminently more treatable one.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundario , Regulación Neoplásica de la Expresión Génica , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/fisiopatología , Adenocarcinoma/genética , Adenocarcinoma/patología , Adenocarcinoma/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Neoplasias Encefálicas/fisiopatología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/fisiopatología , Línea Celular Tumoral , Femenino , Humanos , Masculino , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Trasplante de Neoplasias , Estudios Prospectivos , Proteoglicanos/genética , Proteoglicanos/metabolismo , Interferencia de ARN , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo
4.
J Neurooncol ; 126(1): 57-67, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26498281

RESUMEN

Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults with average disease relapse at 9 months and median survival rarely extending beyond 15 months. Brain tumor stem cells (BTSCs) have been implicated in not only initiating GBM but also conferring resistance to therapy. However, it is not clear whether the BTSC population that initiates tumor growth is also responsible for GBM recurrence. In this study, we have developed a novel in vitro treatment model to profile the evolution of primary treatment-naïve GBM BTSCs through chemoradiotherapy. We report that our in vitro model enriched for a CD15+/CD133- BTSC population, mirroring the phenotype of BTSCs in recurrent GBM. We also show that in vitro treatment increased stem cell gene expression as well as self-renewal capacity of primary GBMs. In addition, the chemoradiotherapy-refractory gene signature obtained from gene expression profiling identified a hyper-aggressive subtype of glioma. The delivery of in vitro chemoradiotherapy to primary GBM BTSCs models several aspects of recurrent GBM biology, and could be used as a discovery and drug-screening platform to uncover new biological drivers and therapeutic targets in GBM.


Asunto(s)
Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica/fisiología , Glioblastoma/patología , Células Madre Neoplásicas/patología , Anciano , Anciano de 80 o más Años , Análisis de Varianza , Antígenos CD/metabolismo , Antinematodos/farmacología , Antineoplásicos/farmacología , Autorrenovación de las Células/fisiología , Relación Dosis-Respuesta a Droga , Femenino , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Masculino , Persona de Mediana Edad , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/efectos de la radiación , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Células Tumorales Cultivadas
5.
Stem Cells ; 31(7): 1266-77, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23592496

RESUMEN

Brain tumors represent the leading cause of childhood cancer mortality, of which medulloblastoma (MB) is the most frequent malignant tumor. Recent studies have demonstrated the presence of several MB molecular subgroups, each distinct in terms of prognosis and predicted therapeutic response. Groups 1 and 2 are characterized by relatively good clinical outcomes and activation of the Wnt and Shh pathways, respectively. In contrast, groups 3 and 4 ("non-Shh/Wnt MBs") are distinguished by metastatic disease, poor patient outcome, and lack a molecular pathway phenotype. Current gene expression platforms have not detected brain tumor-initiating cell (BTIC) self-renewal genes in groups 3 and 4 MBs as BTICs typically comprise a minority of tumor cells and may therefore go undetected on bulk tumor analyses. Since increasing BTIC frequency has been associated with increasing tumor aggressiveness and poor patient outcome, we investigated the subgroup-specific gene expression profile of candidate stem cell genes within 251 primary human MBs from four nonoverlapping MB transcriptional databases (Amsterdam, Memphis, Toronto, Boston) and 74 NanoString-subgrouped MBs (Vancouver). We assessed the functional relevance of two genes, FoxG1 and Bmi1, which were significantly enriched in non-Shh/Wnt MBs and showed these genes to mediate MB stem cell self-renewal and tumor initiation in mice. We also identified their transcriptional regulation through reciprocal promoter occupancy in CD15+ MB stem cells. Our work demonstrates the application of stem cell data gathered from genomic platforms to guide functional BTIC assays, which may then be used to develop novel BTIC self-renewal mechanisms amenable to therapeutic targeting.


Asunto(s)
Neoplasias Cerebelosas/metabolismo , Factores de Transcripción Forkhead/metabolismo , Meduloblastoma/metabolismo , Células Madre Neoplásicas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Animales , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Factores de Transcripción Forkhead/genética , Humanos , Meduloblastoma/genética , Meduloblastoma/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proteínas del Tejido Nervioso/genética , Complejo Represivo Polycomb 1/genética , Pronóstico , Regiones Promotoras Genéticas , Transducción de Señal , Transcriptoma
6.
Int J Mol Sci ; 15(5): 9117-33, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24857921

RESUMEN

Brain metastases (BMs) are the most common brain tumor in adults, developing in about 10% of adult cancer patients. It is not the incidence of BM that is alarming, but the poor patient prognosis. Even with aggressive treatments, median patient survival is only months. Despite the high rate of BM-associated mortality, very little research is conducted in this area. Lack of research and staggeringly low patient survival is indicative that a novel approach to BMs and their treatment is needed. The ability of a small subset of primary tumor cells to produce macrometastases is reminiscent of brain tumor-initiating cells (BTICs) or cancer stem cells (CSCs) hypothesized to form primary brain tumors. BTICs are considered stem cell-like due to their self-renewal and differentiation properties. Similar to the subset of cells forming metastases, BTICs are most often a rare subpopulation. Based on the functional definition of a TIC, cells capable of forming a BM could be considered to be brain metastasis-initiating cells (BMICs). These putative BMICs would not only have the ability to initiate tumor growth in a secondary niche, but also the machinery to escape the primary tumor, migrate through the circulation, and invade the neural niche.


Asunto(s)
Neoplasias Encefálicas/patología , Células Madre Neoplásicas/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Invasividad Neoplásica , Células Neoplásicas Circulantes/metabolismo , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología
7.
Pediatr Res ; 71(4 Pt 2): 516-22, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22430388

RESUMEN

Brain tumors are the leading cause of childhood cancer mortality, with medulloblastoma (MB) representing the most frequent malignant tumor. The recent molecular classification of MB has reconceptualized the heterogeneity that exists within pathological subtypes by giving context to the role of key developmental signaling pathways in MB pathogenesis. The identification of cancer stem cell (CSC) populations, termed brain tumor-initiating cells (BTICs), in MB has provided novel cellular targets for the study of these aberrantly activated signaling pathways, namely, Sonic hedgehog (Shh) and Wingless (Wnt), along with the identification of novel BTIC self-renewal pathways. In this review, we discuss recent evidence for the presence of a MB stem cell that drives tumorigenesis in this malignant childhood tumor. We focus on evidence from cerebellar development, the recent identification of BTICs, the presence of activated developmental signaling pathways in MB, the role of epigenetic stem cell regulatory mechanisms, and how these developmental and epigenetic pathways may be targeted for novel therapeutic options.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Neoplasias Cerebelosas/fisiopatología , Cerebelo/crecimiento & desarrollo , Meduloblastoma/fisiopatología , Modelos Biológicos , Células Madre Neoplásicas/fisiología , Pediatría/métodos , Transducción de Señal/fisiología , Cerebelo/metabolismo , Niño , Proteínas Hedgehog/metabolismo , Humanos , Pediatría/tendencias , Proteínas Wnt/metabolismo
8.
J Neurooncol ; 109(3): 457-66, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22752853

RESUMEN

Glioblastoma (GBM) is the most aggressive primary brain tumor in humans, with a uniformly poor prognosis. The tumor microenvironment is composed of both supportive cellular substrates and exogenous factors. We hypothesize that exogenous factors secreted by brain tumor initiating cells (BTICs) could predispose normal neural precursor cells (NPCs) to transformation. When NPCs are grown in GBM-conditioned media, and designated as "tumor-conditioned NPCs" (tcNPCs), they become highly proliferative and exhibit increased stem cell self-renewal, or the unique ability of stem cells to asymmetrically generate another stem cell and a daughter cell. tcNPCs also show an increased transcript level of stem cell markers such as CD133 and ALDH and growth factor receptors such as VEGFR1, VEGFR2, EGFR and PDGFRα. Media analysis by ELISA of GBM-conditioned media reveals an elevated secretion of growth factors such as EGF, VEGF and PDGF-AA when compared to normal neural stem cell-conditioned media. We also demonstrate that tcNPCs require prolonged or continuous exposure to the GBM secretome in vitro to retain GBM BTIC characteristics. Our in vivo studies reveal that tcNPCs are unable to form tumors, confirming that irreversible transformation events may require sustained or prolonged presence of the GBM secretome. Analysis of GBM-conditioned media by mass spectrometry reveals the presence of secreted proteins Chitinase-3-like 1 (CHI3L1) and H2A histone family member H2AX. Collectively, our data suggest that GBM-secreted factors are capable of transiently altering normal NPCs, although for retention of the transformed phenotype, sustained or prolonged secretome exposure or additional transformation events are likely necessary.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Transformación Celular Neoplásica/metabolismo , Glioblastoma/metabolismo , Células-Madre Neurales/metabolismo , Microambiente Tumoral/fisiología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Transformación Celular Neoplásica/efectos de los fármacos , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Espectrometría de Masas , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/metabolismo , Trasplante Heterólogo
9.
J Biol Chem ; 285(23): 17614-27, 2010 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-20382739

RESUMEN

Interactions of Bcl-2 family proteins regulate permeability of the mitochondrial outer membrane and apoptosis. In particular, Bax forms an oligomer that permeabilizes the membrane. To map the interface of the Bax oligomer we used Triton X-100 as a membrane surrogate and performed site-specific photocross-linking. Bax-specific adducts were formed through photo-reactive probes at multiple sites that can be grouped into two surfaces. The first surface overlaps with the BH1-3 groove formed by Bcl-2 Homology motif 1, 2, and 3; the second surface is a rear pocket located on the opposite side of the protein from the BH1-3 groove. Further cross-linking experiments using Bax BH3 peptides and mutants demonstrated that the two surfaces interact with their counterparts in neighboring proteins to form two separated interfaces and that interaction at the BH1-3 groove primes the rear pocket for further interaction. Therefore, Bax oligomerization proceeds through a series of interactions that occur at separate, yet allosterically, coupled interfaces.


Asunto(s)
Apoptosis , Proteína X Asociada a bcl-2/metabolismo , Sitio Alostérico , Secuencias de Aminoácidos , Bioquímica/métodos , Reactivos de Enlaces Cruzados/química , Detergentes/farmacología , Humanos , Mutación , Octoxinol/farmacología , Péptidos/química , Plásmidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-bcl-2/química
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7594-7597, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892848

RESUMEN

This work presents a wireless time-scaling chaotic shift keying encryption system that can be used in wireless body area network applications. In wireless sensor nodes, the communication protocol being used provides some security measures and is implemented in software. However, no additional security measures are usually implemented. This paper demonstrates a discrete level real time encryption system using analog circuitry on a printed circuit board. The encryption system uses op amps, multipliers and resistors to implement the encryption. To implement wireless capabilities, commercial wireless microcontrollers using Bluetooth Low Energy were added, and a custom Bluetooth Low Energy profile was created to stream the analog encrypted signal.Clinical relevance- This work demonstrates an encryption system for wireless sensor devices for improved protection of private health information.


Asunto(s)
Algoritmos , Seguridad Computacional , Comunicación , Redes de Comunicación de Computadores , Programas Informáticos
11.
IEEE Trans Biomed Circuits Syst ; 15(3): 390-401, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34214043

RESUMEN

In this paper, a combined pH and impedance sensing system suitable for portable measurements is presented. The sensor outputs are converted directly to frequency or pulse width. The pH sensor is based on a voltage clamp topology that uses charging and discharging capacitors, voltage window comparators, and an SR-Latch to convert the output to frequency. The impedance to frequency sensor is based on current and voltage comparators and an SR-Latch. The pH system based on ISFET transistors is experimentally verified with on chip electrodes while the impedance sensor is characterized with discrete electronic components. The portable system is implemented with two chips and an external multi-electrode array into a portable system. Resistance, capacitance, and pH are experimentally measured using buffer solutions to simulate a water quality monitoring application. The system is implemented in a portable format and all modules, excluding the commercial microprocessor, consume an average power of 56 µW with an area of 0.006 mm 2 using a 180 nm technology.


Asunto(s)
Impedancia Eléctrica , Capacidad Eléctrica , Electrodos , Concentración de Iones de Hidrógeno
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7578-7581, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892844

RESUMEN

This paper presents the experimental findings towards developing carbonized microelectrodes using a Joule heating process within a temperature window that is compatible with CMOS. Bridge-on-pillars polymer structures have been 3D-printed using two-photon polymerization (2PP). They have been annealed in various processing conditions to increase the fraction of carbon in the precursor material and to achieve appreciable electric conductivity so that they can be used to drive current to enable Joule heating. To evaluate the outcome of the processing sequences, Raman spectroscopy has been performed to assess the degree of carbonization. Such CMOS-compatible carbon electrodes are important for monolithic, low-cost biosensor development.Clinical relevance- This establishes the potential of carbonized polymer electrode for low-cost, CMOS-compatible monolithic biosensor platform for implementation in medical diagnosis and treatment.


Asunto(s)
Técnicas Biosensibles , Polímeros , Conductividad Eléctrica , Electrodos , Calefacción
13.
Sci Adv ; 7(50): eabi5568, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34878832

RESUMEN

Medulloblastoma (MB) remains a leading cause of cancer-related mortality among children. The paucity of MB samples collected at relapse has hindered the functional understanding of molecular mechanisms driving therapy failure. New models capable of accurately recapitulating tumor progression in response to conventional therapeutic interventions are urgently needed. In this study, we developed a therapy-adapted PDX MB model that has a distinct advantage of generating human MB recurrence. The comparative gene expression analysis of MB cells collected throughout therapy led to identification of genes specifically up-regulated after therapy, including one previously undescribed in the setting of brain tumors, bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4). Subsequent functional validation resulted in a markedly diminished in vitro proliferation, self-renewal, and longevity of MB cells, translating into extended survival and reduced tumor burden in vivo. Targeting endothelial nitric oxide synthase, a downstream substrate of BPIFB4, impeded growth of several patient-derived MB lines at low nanomolar concentrations.

14.
IEEE Access ; 8: 184457-184474, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34786293

RESUMEN

This paper reviews the current state of the art in wearable sensors, including current challenges, that can alleviate the loads on hospitals and medical centers. During the COVID-19 Pandemic in 2020, healthcare systems were overwhelmed by people with mild to severe symptoms needing care. A careful study of pandemics and their symptoms in the past 100 years reveals common traits that should be monitored for managing the health and economic costs. Cheap, low power, and portable multi-modal-sensors that detect the common symptoms can be stockpiled and ready for the next pandemic. These sensors include temperature sensors for fever monitoring, pulse oximetry sensors for blood oxygen levels, impedance sensors for thoracic impedance, and other state sensors that can be integrated into a single system and connected to a smartphone or data center. Both research and commercial medically approved devices are reviewed with an emphasis on the electronics required to realize the sensing. The performance characteristics, such as accuracy, power, resolution, and size of each sensor modality are critically examined. A discussion of the characteristics, research challenges, and features of an ideal integrated wearable system is also presented.

15.
IEEE Trans Biomed Circuits Syst ; 14(5): 1108-1121, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32946399

RESUMEN

In this paper, we demonstrate a novel non-invasive, wearable impedance sensor. The impedance sensor, using an impedance to frequency measurement, with two modes of resistance and capacitance measurement is implemented in CMOS 130 nm technology. The sensor consisting of current and voltage comparators for different mode of measurement, has a low power consumption of 30 µW per channel. The sensor is demonstrated in two applications, thoracic impedance and hand gesture recognition. Thoracic impedance is based on impedance modulation through fluid accumulation. Hand gestures are detected through tissue impedance sensing. The full thoracic impedance sensing system is smaller than a credit card, low cost, and consumes 3 mW which includes the sensor, transmitter, and power control unit. Data received by this sensor can be easily transferred for further processing and, eventually, detection of heart failure. The electrodes were implemented using conductive paint, and the system was validated using passive loads to represent human tissue models and test subjects. The hand gesture system operates on 600  µW with the maximum number of electrodes, and uses adhesive copper with electrical paint as electrodes.


Asunto(s)
Impedancia Eléctrica , Dispositivos Electrónicos Vestibles , Capacidad Eléctrica , Electrodos , Diseño de Equipo , Humanos
16.
Cell Stem Cell ; 26(6): 832-844.e6, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32464096

RESUMEN

CD133 marks self-renewing cancer stem cells (CSCs) in a variety of solid tumors, and CD133+ tumor-initiating cells are known markers of chemo- and radio-resistance in multiple aggressive cancers, including glioblastoma (GBM), that may drive intra-tumoral heterogeneity. Here, we report three immunotherapeutic modalities based on a human anti-CD133 antibody fragment that targets a unique epitope present in glycosylated and non-glycosylated CD133 and studied their effects on targeting CD133+ cells in patient-derived models of GBM. We generated an immunoglobulin G (IgG) (RW03-IgG), a dual-antigen T cell engager (DATE), and a CD133-specific chimeric antigen receptor T cell (CAR-T): CART133. All three showed activity against patient-derived CD133+ GBM cells, and CART133 cells demonstrated superior efficacy in patient-derived GBM xenograft models without causing adverse effects on normal CD133+ hematopoietic stem cells in humanized CD34+ mice. Thus, CART133 cells may be a therapeutically tractable strategy to target CD133+ CSCs in human GBM or other treatment-resistant primary cancers.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Antígeno AC133 , Animales , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Humanos , Inmunoterapia , Ratones , Células Madre Neoplásicas
17.
Biosens Bioelectron ; 143: 111600, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31479988

RESUMEN

With the increasing need for multi-analyte point-of-care diagnosis devices, cell impedance measurement is a promising technique for integration with other sensing modalities. In this comprehensive review, the theory underlying cell impedance sensing, including the history, complementary metal-oxide-semiconductor (CMOS) based implementations, and applications are critically assessed. Whole cell impedance sensing, also known as electric cell-substrate impedance sensing (ECIS) or electrical impedance spectroscopy (EIS), is an approach for studying and diagnosing living cells in in-vitro and in-vivo environments. The technique is popular since it is label-free, non-invasive, and low cost when compared to standard biochemical assays. CMOS cell impedance measurement systems have been focused on expanding their applications to numerous aspects of biological, environmental, and food safety applications. This paper presents and evaluates circuit topologies for whole cell impedance measurement. The presented review compares several existing CMOS designs, including the classification, measurement speed, and sensitivity of varying topologies.


Asunto(s)
Técnicas Biosensibles , Impedancia Eléctrica , Semiconductores , Espectroscopía Dieléctrica , Diseño de Equipo , Humanos , Metales/química , Óxidos/química
18.
Oncogene ; 38(10): 1702-1716, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30348991

RESUMEN

Medulloblastoma (MB) is the most frequent malignant pediatric brain tumor, representing 20% of newly diagnosed childhood central nervous system malignancies. Although advances in multimodal therapy yielded a 5-year survivorship of 80%, MB still accounts for the leading cause of childhood cancer mortality. In this work, we describe the epigenetic regulator BMI1 as a novel therapeutic target for the treatment of recurrent human Group 3 MB, a childhood brain tumor for which there is virtually no treatment option beyond palliation. Current clinical trials for recurrent MB patients based on genomic profiles of primary, treatment-naive tumors will provide limited clinical benefit since recurrent metastatic MBs are highly genetically divergent from their primary tumor. Using a small molecule inhibitor against BMI1, PTC-028, we were able to demonstrate complete ablation of self-renewal of MB stem cells in vitro. When administered to mice xenografted with patient tumors, we observed significant reduction in tumor burden in both local and metastatic compartments and subsequent increased survival, without neurotoxicity. Strikingly, serial in vivo re-transplantation assays demonstrated a marked reduction in tumor initiation ability of recurrent MB cells upon re-transplantation of PTC-028-treated cells into secondary recipient mouse brains. As Group 3 MB is often metastatic and uniformly fatal at recurrence, with no current or planned trials of targeted therapy, an efficacious targeted agent would be rapidly transitioned to clinical trials.


Asunto(s)
Neoplasias Cerebelosas/tratamiento farmacológico , Meduloblastoma/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Complejo Represivo Polycomb 1/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Niño , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo , Ratones , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Complejo Represivo Polycomb 1/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Resultado del Tratamiento , Regulación hacia Arriba/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Mutagenesis ; 23(6): 465-72, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18644835

RESUMEN

This study examined whether radiation sensitivity measured by lymphocyte apoptosis could be ameliorated by a complex anti-oxidant/anti-ageing dietary supplement. We also examined lymphocytes from both genders of normal (Nr) mice as well as transgenic growth hormone (Tg) mice that express strongly elevated reactive oxygen species processes and a progeroid syndrome of accelerated ageing. We introduce Tg mice as a potentially valuable new model to study radiation sensitivity. Isolated lymphocytes from all experimental groups were exposed to gamma radiation and the time course of apoptosis was measured in vitro. Kinetics of radiation-induced apoptosis was similar among groups, which peaked at 8 h, but maximal levels differed significantly between groups. Nr male mice had 60% lower levels of radiation-induced apoptosis than Tg males, supporting our hypothesis that Tg mice would be radiation sensitive. The dietary supplement protected lymphocytes in male mice of both strains, with proportionally greater reductions in Tg mice. Lymphocytes from female mice (both Nr and Tg) were highly radiation resistant compared to males and the supplement provided no additional benefit at the doses used in this study. These results highlight that radiation-induced apoptosis is complex and is modified by genotype, dietary supplements and gender.


Asunto(s)
Apoptosis , Suplementos Dietéticos , Genotipo , Linfocitos/efectos de la radiación , Animales , Dieta , Relación Dosis-Respuesta a Droga , Femenino , Rayos gamma , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Estrés Oxidativo , Factores Sexuales
20.
Cancer Res ; 78(17): 5124-5134, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29986997

RESUMEN

Brain metastases (BM) result from the spread of primary tumors to the brain and are a leading cause of cancer mortality in adults. Secondary tissue colonization remains the main bottleneck in metastatic development, yet this "premetastatic" stage of the metastatic cascade, when primary tumor cells cross the blood-brain barrier and seed the brain before initiating a secondary tumor, remains poorly characterized. Current studies rely on specimens from fully developed macrometastases to identify therapeutic options in cancer treatment, overlooking the potentially more treatable "premetastatic" phase when colonizing cancer cells could be targeted before they initiate the secondary brain tumor. Here we use our established brain metastasis initiating cell (BMIC) models and gene expression analyses to characterize premetastasis in human lung-to-BM. Premetastatic BMIC engaged invasive and epithelial developmental mechanisms while simultaneously impeding proliferation and apoptosis. We identified the dopamine agonist apomorphine to be a potential premetastasis-targeting drug. In vivo treatment with apomorphine prevented BM formation, potentially by targeting premetastasis-associated genes KIF16B, SEPW1, and TESK2 Low expression of these genes was associated with poor survival of patients with lung adenocarcinoma. These results illuminate the cellular and molecular dynamics of premetastasis, which is subclinical and currently impossible to identify or interrogate in human patients with BM. These data present several novel therapeutic targets and associated pathways to prevent BM initiation.Significance: These findings unveil molecular features of the premetastatic stage of lung-to-brain metastases and offer a potential therapeutic strategy to prevent brain metastases. Cancer Res; 78(17); 5124-34. ©2018 AACR.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Terapia Molecular Dirigida , Metástasis de la Neoplasia/tratamiento farmacológico , Apomorfina/farmacología , Apoptosis/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Dopamina/metabolismo , Agonistas de Dopamina/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Cinesinas/genética , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Proteínas Serina-Treonina Quinasas/genética , Selenoproteína W/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA