Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecol Evol ; 12(9): e9255, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36091339

RESUMEN

In long-lived species, reproductive skipping is a common strategy whereby sexually mature animals skip a breeding season, potentially reducing population growth. This may be an adaptive decision to protect survival, or a non-adaptive decision driven by individual-specific constraints. Understanding the presence and drivers of reproductive skipping behavior can be important for effective population management, yet in many species such as the endangered African penguin (Spheniscus demersus), these factors remain unknown. This study uses multistate mark-recapture methods to estimate African penguin survival and breeding probabilities at two colonies between 2013 and 2020. Overall, survival (mean ± SE) was higher at Stony Point (0.82 ± 0.01) than at Robben Island (0.77 ± 0.02). Inter-colony differences were linked to food availability; under decreasing sardine (Sardinops sagax) abundance, survival decreased at Robben Island and increased at Stony Point. Additionally, reproductive skipping was evident across both colonies; at Robben Island the probability of a breeder becoming a nonbreeder was ~0.22, versus ~0.1 at Stony Point. Penguins skipping reproduction had a lower probability of future breeding than breeding individuals; this lack of adaptive benefit suggests reproductive skipping is driven by individual-specific constraints. Lower survival and breeding propensity at Robben Island places this colony in greater need of conservation action. However, further research on the drivers of inter-colony differences is needed.

2.
R Soc Open Sci ; 4(9): 170918, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28989785

RESUMEN

Marine piscivores have evolved a variety of morphological and behavioural adaptations, including group foraging, to optimize foraging efficiency when targeting shoaling fish. For penguins that are known to associate at sea and feed on these prey resources, there is nonetheless a lack of empirical evidence to support improved foraging efficiency when foraging with conspecifics. We examined the hunting strategies and foraging performance of breeding African penguins equipped with animal-borne video recorders. Individuals pursued both solitary as well as schooling pelagic fish, and demonstrated independent as well as group foraging behaviour. The most profitable foraging involved herding of fish schools upwards during the ascent phase of a dive where most catches constituted depolarized fish. Catch-per-unit-effort was significantly improved when targeting fish schools as opposed to single fish, especially when foraging in groups. In contrast to more generalist penguin species, African penguins appear to have evolved specialist hunting strategies closely linked to their primary reliance on schooling pelagic fish. The specialist nature of the observed hunting strategies further limits the survival potential of this species if Allee effects reduce group size-related foraging efficiency. This is likely to be exacerbated by diminishing fish stocks due to resource competition and environmental change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA