Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cancer ; 124(5): 1070-1082, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29194591

RESUMEN

BACKGROUND: It is possible that the relative lack of progress in treatment outcomes among adolescent and young adult (AYA) patients with cancer is caused by a difference in disease biology compared with the corresponding diseases in younger and older individuals. There is evidence that colon cancer is more aggressive and has a poorer prognosis in AYA patients than in older adult patients. METHODS: To further understand the molecular basis for this difference, whole-exome sequencing was conducted on a cohort of 30 adult, 30 AYA, and 2 pediatric colon cancers. RESULTS: A statistically significant difference in mutational frequency was observed between AYA and adult samples in 43 genes, including ROBO1, MYC binding protein 2 (MYCBP2), breast cancer 2 (early onset) (BRCA2), MAP3K3, MCPH1, RASGRP3, PTCH1, RAD9B, CTNND1, ATM, NF1; KIT, PTEN, and FBXW7. Many of these mutations were nonsynonymous, missense, stop-gain, or frameshift mutations that were damaging. Next, RNA sequencing was performed on a subset of the samples to confirm the mutations identified by exome sequencing. This confirmation study verified the presence of a significantly greater frequency of damaging mutations in AYA compared with adult colon cancers for 5 of the 43 genes (MYCBP2, BRCA2, PHLPP1, TOPORS, and ATR). CONCLUSIONS: The current results provide the rationale for a more comprehensive study with a larger sample set and experimental validation of the functional impact of the identified variants along with their contribution to the biologic and clinical characteristics of AYA colon cancer. Cancer 2018;124:1070-82. © 2017 American Cancer Society.


Asunto(s)
Colon/metabolismo , Neoplasias del Colon/genética , Secuenciación del Exoma/métodos , Predisposición Genética a la Enfermedad/genética , Mutación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Colon/patología , Neoplasias del Colon/patología , Femenino , Perfilación de la Expresión Génica/métodos , Frecuencia de los Genes , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
2.
J Mol Diagn ; 25(7): 477-489, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37068734

RESUMEN

Genomic profiling is critical for precision oncology to guide treatment decisions. Liquid biopsy testing is a complementary approach to tissue testing, particularly when tissue is not readily available. The Labcorp Plasma Focus test is a circulating cell-free DNA genomic profiling test that identifies actionable variants in solid cancers, including non-small-cell lung, colorectal, melanoma, breast, esophageal, gastroesophageal junction, and gastric cancers. This study highlights the analytical validation of the test, including accuracy compared with orthogonal methods, as well as sensitivity, specificity, precision, reproducibility, and repeatability. Concordance with orthogonal methods showed percent positive agreement of 98.7%, 89.3%, and 96.2% for single nucleotide variants (SNVs), insertion/deletions (indels), and copy number amplifications (CNAs), respectively, and 100.0% for translocations and microsatellite instability (MSI). Analytical sensitivity revealed a median limit of detection of 0.7% and 0.6% for SNVs and indels, 1.4-fold for CNAs, 0.5% variant allele frequency for translocations, and 0.6% for MSI. Specificity was >99% for SNVs/indels and 100% for CNAs, translocations, and MSI. Average positive agreement from precision, reproducibility, and repeatability experiments was 97.5% and 88.9% for SNVs/indels and CNAs, and 100% for translocations and MSI. Taken together, these data show that the Labcorp Plasma Focus test is a highly accurate, sensitive, and specific approach for cell-free DNA genomic profiling to supplement tissue testing and inform treatment decisions.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ácidos Nucleicos Libres de Células , Neoplasias Pulmonares , Humanos , Ácidos Nucleicos Libres de Células/genética , Reproducibilidad de los Resultados , Medicina de Precisión , Inestabilidad de Microsatélites , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
3.
Nat Commun ; 13(1): 2830, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35595835

RESUMEN

The lack of validated, distributed comprehensive genomic profiling assays for patients with cancer inhibits access to precision oncology treatment. To address this, we describe elio tissue complete, which has been FDA-cleared for examination of 505 cancer-related genes. Independent analyses of clinically and biologically relevant sequence changes across 170 clinical tumor samples using MSK-IMPACT, FoundationOne, and PCR-based methods reveals a positive percent agreement of >97%. We observe high concordance with whole-exome sequencing for evaluation of tumor mutational burden for 307 solid tumors (Pearson r = 0.95) and comparison of the elio tissue complete microsatellite instability detection approach with an independent PCR assay for 223 samples displays a positive percent agreement of 99%. Finally, evaluation of amplifications and translocations against DNA- and RNA-based approaches exhibits >98% negative percent agreement and positive percent agreement of 86% and 82%, respectively. These methods provide an approach for pan-solid tumor comprehensive genomic profiling with high analytical performance.


Asunto(s)
Neoplasias , Biomarcadores de Tumor/genética , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutación , Neoplasias/patología , Medicina de Precisión
4.
Cancer Inform ; 15: 65-71, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27147817

RESUMEN

With rapid advances in DNA sequencing technologies, whole exome sequencing (WES) has become a popular approach for detecting somatic mutations in oncology studies. The initial intent of WES was to characterize single nucleotide variants, but it was observed that the number of sequencing reads that mapped to a genomic region correlated with the DNA copy number variants (CNVs). We propose a method RefCNV that uses a reference set to estimate the distribution of the coverage for each exon. The construction of the reference set includes an evaluation of the sources of variability in the coverage distribution. We observed that the processing steps had an impact on the coverage distribution. For each exon, we compared the observed coverage with the expected normal coverage. Thresholds for determining CNVs were selected to control the false-positive error rate. RefCNV prediction correlated significantly (r = 0.96-0.86) with CNV measured by digital polymerase chain reaction for MET (7q31), EGFR (7p12), or ERBB2 (17q12) in 13 tumor cell lines. The genome-wide CNV analysis showed a good overall correlation (Spearman's coefficient = 0.82) between RefCNV estimation and publicly available CNV data in Cancer Cell Line Encyclopedia. RefCNV also showed better performance than three other CNV estimation methods in genome-wide CNV analysis.

5.
J Mol Diagn ; 18(5): 753-761, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27455875

RESUMEN

The National Institute of Standards and Technology (NIST) Standard Reference Materials 2373 is a set of genomic DNA samples prepared from five breast cancer cell lines with certified values for the ratio of the HER2 gene copy number to the copy numbers of reference genes determined by real-time quantitative PCR and digital PCR. Targeted-amplicon, whole-exome, and whole-genome sequencing measurements were used with the reference material to compare the performance of both the laboratory steps and the bioinformatic approaches of the different methods using a range of amplification ratios. Although good reproducibility was observed in each next-generation sequencing method, slightly different HER2 copy numbers associated with platform-specific biases were obtained. This study clearly demonstrates the value of Standard Reference Materials 2373 as reference material and as a calibrator for evaluating assay performance as well as for increasing confidence in reporting HER2 amplification for clinical applications.


Asunto(s)
Amplificación de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Receptor ErbB-2/genética , Estándares de Referencia , Línea Celular Tumoral , Exoma , Femenino , Dosificación de Gen , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Humanos , Masculino , Neoplasias/diagnóstico , Neoplasias/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
J Mol Diagn ; 18(3): 336-349, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27105923

RESUMEN

Although next-generation sequencing technologies have been widely adapted for clinical diagnostic applications, an urgent need exists for multianalyte calibrator materials and controls to evaluate the performance of these assays. Control materials will also play a major role in the assessment, development, and selection of appropriate alignment and variant calling pipelines. We report an approach to provide effective multianalyte controls for next-generation sequencing assays, referred to as the control plasmid spiked-in genome (CPSG). Control plasmids that contain approximately 1000 bases of human genomic sequence with a specific mutation of interest positioned near the middle of the insert and a nearby 6-bp molecular barcode were synthesized, linearized, quantitated, and spiked into genomic DNA derived from formalin-fixed, paraffin-embedded-prepared hapmap cell lines at defined copy number ratios. Serial titration experiments demonstrated the CPSGs performed with similar efficiency of variant detection as formalin-fixed, paraffin-embedded cell line genomic DNA. Repetitive analyses of one lot of CPSGs 90 times during 18 months revealed that the reagents were stable with consistent detection of each of the plasmids at similar variant allele frequencies. CPSGs are designed to work across most next-generation sequencing methods, platforms, and data analysis pipelines. CPSGs are robust controls and can be used to evaluate the performance of different next-generation sequencing diagnostic assays, assess data analysis pipelines, and ensure robust assay performance metrics.


Asunto(s)
Pruebas Genéticas/métodos , Pruebas Genéticas/normas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Plásmidos/genética , Control de Calidad , Estándares de Referencia , Biología Computacional/métodos , Código de Barras del ADN Taxonómico/métodos , Código de Barras del ADN Taxonómico/normas , Genómica/métodos , Genómica/normas , Humanos , Reproducibilidad de los Resultados , Flujo de Trabajo
7.
Clin Cancer Res ; 21(7): 1574-82, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25589624

RESUMEN

PURPOSE: Veliparib, a PARP inhibitor, demonstrated clinical activity in combination with oral cyclophosphamide in patients with BRCA-mutant solid tumors in a phase I trial. To define the relative contribution of PARP inhibition to the observed clinical activity, we conducted a randomized phase II trial to determine the response rate of veliparib in combination with cyclophosphamide compared with cyclophosphamide alone in patients with pretreated BRCA-mutant ovarian cancer or in patients with pretreated primary peritoneal, fallopian tube, or high-grade serous ovarian cancers (HGSOC). EXPERIMENTAL DESIGN: Adult patients were randomized to receive cyclophosphamide alone (50 mg orally once daily) or with veliparib (60 mg orally once daily) in 21-day cycles. Crossover to the combination was allowed at disease progression. RESULTS: Seventy-five patients were enrolled and 72 were evaluable for response; 38 received cyclophosphamide alone and 37 the combination as their initial treatment regimen. Treatment was well tolerated. One complete response was observed in each arm, with three partial responses (PR) in the combination arm and six PRs in the cyclophosphamide alone arm. Genetic sequence and expression analyses were performed for 211 genes involved in DNA repair; none of the detected genetic alterations were significantly associated with treatment benefit. CONCLUSION: This is the first trial that evaluated single-agent, low-dose cyclophosphamide in HGSOC, peritoneal, fallopian tube, and BRCA-mutant ovarian cancers. It was well tolerated and clinical activity was observed; the addition of veliparib at 60 mg daily did not improve either the response rate or the median progression-free survival.


Asunto(s)
Antineoplásicos/uso terapéutico , Cistadenocarcinoma Seroso/tratamiento farmacológico , Neoplasias de las Trompas Uterinas/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Peritoneales/tratamiento farmacológico , Administración Oral , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Bencimidazoles/administración & dosificación , Bencimidazoles/efectos adversos , Ciclofosfamida/administración & dosificación , Ciclofosfamida/efectos adversos , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/mortalidad , Supervivencia sin Enfermedad , Neoplasias de las Trompas Uterinas/genética , Neoplasias de las Trompas Uterinas/mortalidad , Femenino , Genes BRCA1 , Genes BRCA2 , Humanos , Persona de Mediana Edad , Neoplasias Ováricas/genética , Neoplasias Ováricas/mortalidad , Neoplasias Peritoneales/genética , Neoplasias Peritoneales/mortalidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA