RESUMEN
We report an approach to the diastereoselective synthesis of 1,2-disubstituted heterocyclic aziridines. A Brønsted acid-catalyzed conjugate addition of anilines to trisubstituted heterocyclic chloroalkenes provides an intermediate 1,2-chloroamine. Diastereocontrol was found to vary significantly with solvent selection, with computational modelling confirming selective, spontaneous fragmentation in the presence of trace acids, proceeding through a pseudo-cyclic, protonated intermediate and transition state. These chloroamines can then be converted to the aziridine by treatment with LiHMDS with high stereochemical fidelity. This solvent-induced stereochemical enrichment thereby enables an efficient route to rare cis-aziridines with high dr. The scope, limitations, and mechanistic origins of selectivity are also presented.
RESUMEN
A route is developed to (γ,γ',γ'''-trifluoro)neopentyl (TFNP) aryl ethers to extend the methods for the introduction of the tert-butyl group, carrying a fluorine on each of the methyl substituents. The route combines neopentyltosylate 3 with phenols and thiophenols to give efficient substitution reactions to the corresponding TFNP aryl ethers. The three C-F bonds adopt a helical propeller conformation as revealed by computation and single crystal X-ray structure analysis. The LogPs of TFNP ethers are lower (more hydrophilic) than their neopentyl analogues. The metabolism of selected TFNP ethers was explored in the fungus Cunninghamella elegans.
RESUMEN
Malamides (diamide derivatives of malic acid) are prevalent in nature and of significant biological interest, yet only limited synthetic methods to access functionalised enantiopure derivatives have been established to date. Herein, an effective synthetic method to generate this molecular class is developed through in situ formation of spirocyclic ß-lactone-oxindoles (employing a known enantioselective isothiourea-catalysed formal [2+2] cycloaddition of C(1)-ammonium enolates and isatin derivatives) followed by a subsequent dual ring-opening protocol (of the ß-lactone and oxindole) with amine nucleophiles. The application of this protocol is demonstrated across twelve examples to give densely functionalised malamide derivatives with high enantio- and diastereo-selectivity (up to >95:5 dr and >99:1 er).
RESUMEN
Phospholane-phosphites are known to show highly unusual selectivity towards branched aldehydes in the hydroformylation of terminal alkenes. This paper describes the synthesis of hitherto unknown unsaturated phospholene borane precursors and their conversion to the corresponding phospholene-phosphites. The relative stereochemistry of one of these ligands and its Pd complex was assigned with the aid of X-ray crystal structure determinations. These ligands were able to approach the level of selectivity observed for phospholane-phosphites in the rhodium-catalysed hydroformylation of propene. High-pressure infra-red (HPIR) spectroscopic monitoring of the catalyst formation revealed that whilst the catalysts showed good thermal stability with respect to fragmentation, the C=C bond in the phospholene moiety was slowly hydrogenated in the presence of rhodium and syngas. The ability of this spectroscopic tool to detect even subtle changes in structure, remotely from the carbonyl ligands, underlines the usefulness of HPIR spectroscopy in hydroformylation catalyst development.
RESUMEN
The development of methods to allow the selective acylative dynamic kinetic resolution (DKR) of tetra-substituted lactols is a recognised synthetic challenge. In this manuscript, a highly enantioselective isothiourea-catalysed acylative DKR of tetra-substituted morpholinone and benzoxazinone-derived lactols is reported. The scope and limitations of this methodology have been developed, with high enantioselectivity and good to excellent yields (up to 89 %, 99 : 1â er) observed across a broad range of substrate derivatives incorporating substitution at N(4) and C(2), di- and spirocyclic substitution at C(5) and C(6), as well as benzannulation (>35â examples in total). The DKR process is amenable to scale-up on a 1â g laboratory scale. The factors leading to high selectivity in this DKR process have been probed through computation, with an N-C=Oâ â â isothiouronium interaction identified as key to producing ester products in highly enantioenriched form.
RESUMEN
A general and highly enantioselective method for the preparation of tetra-substituted 3-hydroxyphthalide esters via isothiourea-catalysed acylative dynamic kinetic resolution (DKR) is reported. Using (2S,3R)-HyperBTM (5â mol %) as the catalyst, the scope and limitations of this methodology have been extensively probed, with high enantioselectivity and good to excellent yields observed (>40â examples, up to 99 %, 99 : 1â er). Substitution of the aromatic core within the 3-hydroxyphthalide skeleton, as well as aliphatic and aromatic substitution at C(3), is readily tolerated. A diverse range of anhydrides, including those from bioactive and pharmaceutically relevant acids, can also be used. The high enantioselectivity observed in this DKR process has been probed computationally, with a key substrate heteroatom donor Oâ â â acyl-isothiouronium interaction identified through DFT analysis as necessary for enantiodiscrimination.
RESUMEN
This work reports the one-pot synthesis of sterically demanding aniline derivatives from aryllithium species utilising trimethylsilyl azide to introduce amine functionalities and conversions to new examples of a common N,N'-chelating ligand system. The reaction of TripLi (Trip = 2,4,6-iPr3-C6H2) with trimethylsilyl azide afforded the silyltriazene TripN2N(SiMe3)2 in situ, which readily reacts with methanol under dinitrogen elimination to the aniline TripNH2 in good yield. The reaction pathways and by-products of the system have been studied. The extension of this reaction to a much more sterically demanding terphenyl system suggested that TerLi (Ter = 2,6-Trip2-C6H3) slowly reacted with trimethylsilyl azide to form a silyl(terphenyl)triazenide lithium complex in situ, predominantly underwent nitrogen loss to TerN(SiMe3)Li in parallel, which afforded TerN(SiMe3)H after workup, and can be deprotected under acidic conditions to form the aniline TerNH2. TripNH2 was furthermore converted to the sterically demanding ß-diketimines RTripnacnacH (=HC{RCN(Trip)}2H), with R = Me, Et and iPr, in one-pot procedures from the corresponding 1,3-diketones. The bulkiest proligand was employed to synthesise the magnesium hydride complex [{(iPrTripnacnac)MgH}2], which shows a distorted dimeric structure caused by the substituents of the sterically demanding ligand moieties.
RESUMEN
Environmentally acceptable and renewably sourced flame retardants are in demand. Recent studies have shown that the incorporation of the biopolymer lignin into a polymer can improve its ability to form a char layer upon heating to a high temperature. Char layer formation is a central component of flame-retardant activity. The covalent modification of lignin is an established technique that is being applied to the development of potential flame retardants. In this study, four novel modified lignins were prepared, and their char-forming abilities were assessed using thermogravimetric analysis. The lignin was obtained from date palm wood using a butanosolv pretreatment. The removal of the majority of the ester groups from this heavily acylated lignin was achieved via alkaline hydrolysis. The subsequent modification of the lignin involved the incorporation of an azide functional group and copper-catalysed azide-alkyne cycloaddition reactions. These reactions enabled novel organophosphorus heterocycles to be linked to the lignin. Our preliminary results suggest that the modified lignins had improved char-forming activity compared to the controls. 31P and HSQC NMR and small-molecule X-ray crystallography were used to analyse the prepared compounds and lignins.
RESUMEN
The title compound, C16H12FN3OS, a fluorinated di-thio-carbazate imine derivative, was synthesized by the one-pot, multi-component condensation reaction of hydrazine hydrate, carbon di-sulfide, 4-fluoro-benzyl chloride and isatin. The compound demonstrates near-planarity across much of the mol-ecule in the solid state and a Z configuration for the azomethine C=N bond. The Z form is further stabilized by the presence of an intra-molecular N-Hâ¯O hydrogen bond. In the extended structure, mol-ecules are linked into dimers by N-Hâ¯O hydrogen bonds and further connected into chains along either [20] or [100] by weak C-Hâ¯S and C-Hâ¯F hydrogen bonds, which further link into corrugated sheets and in combination form the overall three-dimensional network.
RESUMEN
The title compound, C10H8BrN3OS2, a brominated di-thio-carbazate imine deriv-ative, was obtained from the condensation reaction of S-methyl-dithio-carbazate (SMDTC) and 5-bromo-isatin. The essentially planar mol-ecule exhibits a Z configuration, with the di-thio-carbazate and 5-bromo-isatin fragments located on the same sides of the C=N azomethine bond, which allows for the formation of an intra-molecular N-Hâ¯Ob (b = bromo-isatin) hydrogen bond generating an S(6) ring motif. In the crystal, adjacent mol-ecules are linked by pairs of N-Hâ¯O hydrogen bonds, forming dimers characterized by an R 2 2(8) loop motif. In the extended structure, mol-ecules are linked into a three-dimensional network by C-Hâ¯S and C-Hâ¯Br hydrogen bonds, C-Brâ¯S halogen bonds and aromatic π-π stacking.
RESUMEN
In the title compound, {(C6H8N)[Zn2(HPO3)2(H2PO3)]}n, the constituent ZnO4, HPO3 and H2PO3 polyhedra of the inorganic component are linked into (010) sheets by Zn-O-P bonds (mean angle = 134.4°) and the layers are reinforced by O-Hâ¯O hydrogen bonds. The protonated templates are anchored to the inorganic sheets via bifurcated N-Hâ¯(O,O) hydrogen bonds.
RESUMEN
Benzoxaboraheterocycles (BOBs) are moieties of increasing interest in the pharmaceutical industry; however, the synthesis of these compounds is often difficult or impractical due to the sensitivity of the boron moiety, the requirement for metalation-borylation protocols, and lengthy syntheses. We report a straightforward, modular approach that enables access to complex examples of the BOB framework through a Rh-catalyzed [2 + 2 + 2] cycloaddition using MIDA-protected alkyne boronic acids. The key to the development of this methodology was overcoming the steric barrier to catalysis by leveraging chelation assistance. We show the utility of the method through synthesis of a broad range of BOB scaffolds, mechanistic information on the chelation effect, intramolecular alcohol-assisted BMIDA hydrolysis, and linear/cyclic BOB limits as well as comparative binding affinities of the product BOB frameworks for ribose-derived biomolecules.
RESUMEN
We report the extension of the common ß-diketimine proligand class, RArnacnacH (HC(RCNAr)2H), where R is an alkyl group such as Et or iPr, plus Ph, and Ar is a sterically demanding aryl substituent such as Dip = 2,6-diispropylphenyl, Dep = 2,6-diethylphenyl, Mes = 2,4,6-trimethylphenyl or mesityl, Xyl = 2,6-dimethylphenyl, via one-pot condensation procedures. When a condensation reaction is carried out using the chemical dehydrating agent PPSE (polyphosphoric acid trimethylsilylester), ß-diketiminate phosphorus(V) products such as (iPrMesnacnac)PO2 can also be obtained, which can be converted to the respective proligand iPrMesnacnacH via alkaline hydrolysis. The RArnacnacH proligands can be converted to their alkali metal complexes with common methods and we have found that deprotonation of iPrDipnacnacH is significantly more sluggish than that of related ß-diketimines with smaller backbone alkyl groups. The basicity of the RArnacnac- anions can play a role in the success of their salt metathesis chemistry and we have prepared and structurally characterised the EtDipnacnac-derived silicon(II) compounds (EtDipnacnac)SiBr and (EtDipnacnac')Si, where EtDipnacnac' is the deprotonated variant MeCHC(NDip)CHC(NDip)Et.
RESUMEN
Chiral multiresonant thermally activated delayed fluorescence (MR-TADF) materials show great potential as emitters in circularly polarized (CP) organic light-emitting diodes (CP-OLEDs) owing to their bright and narrowband CP emission. Here, two new chiral MR-TADF emitters tBuPh-BN and DPA-tBuPh-BN possessing intrinsically helical chirality have been synthesized and studied. The large steric interactions between the tert-butylphenyl groups not only induce the helical chirality but also provide a notable configurational stability to the enantiomers. Racemic mixtures of tBuPh-BN and DPA-tBuPh-BN show narrowband emission at 490 and 477 nm with full-width at half maximum (FWHM) of 25 and 28 nm and photoluminescence quantum yields, Φ PL, of 85 and 54% in toluene. The separated enantiomers of tBuPh-BN and DPA-tBuPh-BN show symmetric circularly polarized luminescence (CPL) with respective dissymmetry factors |g PL| values of 1.5 × 10-3 and 0.9 × 10-3. The hyperfluorescence organic light-emitting diodes (HF-OLEDs) with tBuPh-BN and DPA-tBuPh-BN acting as terminal emitters and 2,3,4,5,6-penta-(9H-carbazol-9-yl)benzonitrile (5CzBN) as their assistant dopant exhibited, respectively, maximum external quantum efficiencies (EQEmax) of 20.9 and 15.9% at 492 and 480 nm with FWHM of 34 and 38 nm. This work demonstrates a strategy for developing intrinsically helically chiral MR-TADF emitters possessing significant configurational stability, which can be used in HF-OLEDs.
RESUMEN
The title compound, C17H15N3OS2 was obtained from the condensation reaction of S-benzyl-dithio-carbazate and 5-methyl-isatin. In the solid-state, the mol-ecule adopts a Z configuration with the 5-methyl-isatin and di-thio-carbazate groups located on the same side of the C=N bond, involving an intra-molecular N-Hâ¯O hydrogen bond.
RESUMEN
The development of enantioselective synthetic methods capable of generating vicinal stereogenic centres, where one is tetrasubstituted (such as either an all-carbon quaternary centre or where one or more substituents are heteroatoms), is a recognised synthetic challenge. Herein, the enantioselective conjugate addition of a range of carbo- and heterocyclic α-substituted ß-ketoesters to α,ß-unsaturated aryl esters using the isothiourea HyperBTM as a Lewis base catalyst is demonstrated. Notably, divergent diastereoselectivity is observed through the use of either cyclopentanone-derived or indanone-derived substituted ß-ketoesters with both generating the desired stereodefined products with high selectivity (>95 : 5 dr, up to 99 : 1 er). The scope and limitations of these processes are demonstrated, alongside application on gram scale. The origin of the divergent substrate selectivity has been probed through the use of DFT-analysis, with preferential orientation driven by dual stabilising CHâ¯O interactions. The importance of solvation with strongly polar transition-states is highlighted and the SMD solvation model is demonstrated to capture solvation effects reliably.
RESUMEN
The synthesis and characterisation of a series of [RuII (bpy)2 L] and [Ir(ppy)2 L] complexes containing ligands L with the potential to engage in triple hydrogen bonding interactions is described. L1 and L2 comprise pyridyl triazole chelating units with pendant diaminotriazine units, capable of donor-acceptor-donor (DAD) hydrogen bonding, while L3 and L4 contain ADA hydrogen bonding units proximal to N^N and N^O cleating sites, respectively. X-ray crystallography shows the L1 and L2 containing RuII complexes to assemble via R 2 2 8 hydrogen bonding dimers, while [RuII (bpy)2 L4] assembles via extended hydrogen bonding motifs to form one dimensional chains. By contrast, the expected hydrogen bonding patterns are not observed for the RuII and IrIII complexes of L3. Spectroscopic studies show that the absorption spectra of the complexes result from combinations of MLCT and LLCT transitions. The L1 and L2 complexes of IrIII and RuII complexes are emissive in the solid state and it seems likely that hydrogen bonding to complementary species may facilitate tuning of their 3 ILCT emission. Low frequency Raman spectra provide further evidence for ordered interactions in the solid state for the L4 complexes, consistent with the results from X-ray crystallography.