Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 366
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 621(7980): 716-722, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37758891

RESUMEN

Einstein's general theory of relativity from 19151 remains the most successful description of gravitation. From the 1919 solar eclipse2 to the observation of gravitational waves3, the theory has passed many crucial experimental tests. However, the evolving concepts of dark matter and dark energy illustrate that there is much to be learned about the gravitating content of the universe. Singularities in the general theory of relativity and the lack of a quantum theory of gravity suggest that our picture is incomplete. It is thus prudent to explore gravity in exotic physical systems. Antimatter was unknown to Einstein in 1915. Dirac's theory4 appeared in 1928; the positron was observed5 in 1932. There has since been much speculation about gravity and antimatter. The theoretical consensus is that any laboratory mass must be attracted6 by the Earth, although some authors have considered the cosmological consequences if antimatter should be repelled by matter7-10. In the general theory of relativity, the weak equivalence principle (WEP) requires that all masses react identically to gravity, independent of their internal structure. Here we show that antihydrogen atoms, released from magnetic confinement in the ALPHA-g apparatus, behave in a way consistent with gravitational attraction to the Earth. Repulsive 'antigravity' is ruled out in this case. This experiment paves the way for precision studies of the magnitude of the gravitational acceleration between anti-atoms and the Earth to test the WEP.

2.
Nature ; 592(7852): 35-42, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33790445

RESUMEN

The photon-the quantum excitation of the electromagnetic field-is massless but carries momentum. A photon can therefore exert a force on an object upon collision1. Slowing the translational motion of atoms and ions by application of such a force2,3, known as laser cooling, was first demonstrated 40 years ago4,5. It revolutionized atomic physics over the following decades6-8, and it is now a workhorse in many fields, including studies on quantum degenerate gases, quantum information, atomic clocks and tests of fundamental physics. However, this technique has not yet been applied to antimatter. Here we demonstrate laser cooling of antihydrogen9, the antimatter atom consisting of an antiproton and a positron. By exciting the 1S-2P transition in antihydrogen with pulsed, narrow-linewidth, Lyman-α laser radiation10,11, we Doppler-cool a sample of magnetically trapped antihydrogen. Although we apply laser cooling in only one dimension, the trap couples the longitudinal and transverse motions of the anti-atoms, leading to cooling in all three dimensions. We observe a reduction in the median transverse energy by more than an order of magnitude-with a substantial fraction of the anti-atoms attaining submicroelectronvolt transverse kinetic energies. We also report the observation of the laser-driven 1S-2S transition in samples of laser-cooled antihydrogen atoms. The observed spectral line is approximately four times narrower than that obtained without laser cooling. The demonstration of laser cooling and its immediate application has far-reaching implications for antimatter studies. A more localized, denser and colder sample of antihydrogen will drastically improve spectroscopic11-13 and gravitational14 studies of antihydrogen in ongoing experiments. Furthermore, the demonstrated ability to manipulate the motion of antimatter atoms by laser light will potentially provide ground-breaking opportunities for future experiments, such as anti-atomic fountains, anti-atom interferometry and the creation of antimatter molecules.

3.
Mass Spectrom Rev ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504498

RESUMEN

Mass spectrometry (MS) has become an essential technique to characterize dendrimers as it proved efficient at tackling analytical challenges raised by their peculiar onion-like structure. Owing to their chemical diversity, this review covers benefits of MS methods as a function of dendrimer classes, discussing advantages and limitations of ionization techniques, tandem mass spectrometry (MS/MS) strategies to determine the structure of defective species, as well as most recently demonstrated capabilities of ion mobility spectrometry (IMS) in the field. Complementarily, the well-defined structure of these macromolecules offers major advantages in the development of MS-based method, as reported in a second section reviewing uses of dendrimers as MS and IMS calibration standards and as multifunctional charge inversion reagents in gas phase ion/ion reactions.

4.
Nature ; 561(7722): 211-215, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30135588

RESUMEN

In 1906, Theodore Lyman discovered his eponymous series of transitions in the extreme-ultraviolet region of the atomic hydrogen spectrum1,2. The patterns in the hydrogen spectrum helped to establish the emerging theory of quantum mechanics, which we now know governs the world at the atomic scale. Since then, studies involving the Lyman-α line-the 1S-2P transition at a wavelength of 121.6 nanometres-have played an important part in physics and astronomy, as one of the most fundamental atomic transitions in the Universe. For example, this transition has long been used by astronomers studying the intergalactic medium and testing cosmological models via the so-called 'Lyman-α forest'3 of absorption lines at different redshifts. Here we report the observation of the Lyman-α transition in the antihydrogen atom, the antimatter counterpart of hydrogen. Using narrow-line-width, nanosecond-pulsed laser radiation, the 1S-2P transition was excited in magnetically trapped antihydrogen. The transition frequency at a field of 1.033 tesla was determined to be 2,466,051.7 ± 0.12 gigahertz (1σ uncertainty) and agrees with the prediction for hydrogen to a precision of 5 × 10-8. Comparisons of the properties of antihydrogen with those of its well-studied matter equivalent allow precision tests of fundamental symmetries between matter and antimatter. Alongside the ground-state hyperfine4,5 and 1S-2S transitions6,7 recently observed in antihydrogen, the Lyman-α transition will permit laser cooling of antihydrogen8,9, thus providing a cold and dense sample of anti-atoms for precision spectroscopy and gravity measurements10. In addition to the observation of this fundamental transition, this work represents both a decisive technological step towards laser cooling of antihydrogen, and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum.

6.
Nature ; 557(7703): 71-75, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29618820

RESUMEN

In 1928, Dirac published an equation 1 that combined quantum mechanics and special relativity. Negative-energy solutions to this equation, rather than being unphysical as initially thought, represented a class of hitherto unobserved and unimagined particles-antimatter. The existence of particles of antimatter was confirmed with the discovery of the positron 2 (or anti-electron) by Anderson in 1932, but it is still unknown why matter, rather than antimatter, survived after the Big Bang. As a result, experimental studies of antimatter3-7, including tests of fundamental symmetries such as charge-parity and charge-parity-time, and searches for evidence of primordial antimatter, such as antihelium nuclei, have high priority in contemporary physics research. The fundamental role of the hydrogen atom in the evolution of the Universe and in the historical development of our understanding of quantum physics makes its antimatter counterpart-the antihydrogen atom-of particular interest. Current standard-model physics requires that hydrogen and antihydrogen have the same energy levels and spectral lines. The laser-driven 1S-2S transition was recently observed 8 in antihydrogen. Here we characterize one of the hyperfine components of this transition using magnetically trapped atoms of antihydrogen and compare it to model calculations for hydrogen in our apparatus. We find that the shape of the spectral line agrees very well with that expected for hydrogen and that the resonance frequency agrees with that in hydrogen to about 5 kilohertz out of 2.5 × 1015 hertz. This is consistent with charge-parity-time invariance at a relative precision of 2 × 10-12-two orders of magnitude more precise than the previous determination 8 -corresponding to an absolute energy sensitivity of 2 × 10-20 GeV.

7.
Phys Rev Lett ; 131(20): 201801, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38039482

RESUMEN

A new dark sector antibaryon, denoted ψ_{D}, could be produced in decays of B mesons. This Letter presents a search for B^{+}→ψ_{D}+p (and the charge conjugate) decays in e^{+}e^{-} annihilations at 10.58 GeV, using data collected in the BABAR experiment. Data corresponding to an integrated luminosity of 398 fb^{-1} are analyzed. No evidence for a signal is observed. Branching fraction upper limits in the range from 10^{-7}-10^{-5} are obtained at 90% confidence level for masses of 1.0

8.
Nature ; 541(7638): 506-510, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28005057

RESUMEN

The spectrum of the hydrogen atom has played a central part in fundamental physics over the past 200 years. Historical examples of its importance include the wavelength measurements of absorption lines in the solar spectrum by Fraunhofer, the identification of transition lines by Balmer, Lyman and others, the empirical description of allowed wavelengths by Rydberg, the quantum model of Bohr, the capability of quantum electrodynamics to precisely predict transition frequencies, and modern measurements of the 1S-2S transition by Hänsch to a precision of a few parts in 1015. Recent technological advances have allowed us to focus on antihydrogen-the antimatter equivalent of hydrogen. The Standard Model predicts that there should have been equal amounts of matter and antimatter in the primordial Universe after the Big Bang, but today's Universe is observed to consist almost entirely of ordinary matter. This motivates the study of antimatter, to see if there is a small asymmetry in the laws of physics that govern the two types of matter. In particular, the CPT (charge conjugation, parity reversal and time reversal) theorem, a cornerstone of the Standard Model, requires that hydrogen and antihydrogen have the same spectrum. Here we report the observation of the 1S-2S transition in magnetically trapped atoms of antihydrogen. We determine that the frequency of the transition, which is driven by two photons from a laser at 243 nanometres, is consistent with that expected for hydrogen in the same environment. This laser excitation of a quantum state of an atom of antimatter represents the most precise measurement performed on an anti-atom. Our result is consistent with CPT invariance at a relative precision of about 2 × 10-10.

9.
Nature ; 548(7665): 66-69, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28770838

RESUMEN

The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 1013 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger's relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen-the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter. Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 104. This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.

10.
Biol Reprod ; 107(6): 1477-1489, 2022 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-36130202

RESUMEN

Morphogenesis of the female reproductive tract is regulated by the mesenchyme. However, the identity of the mesenchymal lineage that directs the morphogenesis of the female reproductive tract has not been determined. Using in vivo genetic cell ablation, we identified Amhr2+ mesenchyme as an essential mesenchymal population in patterning the female reproductive tract. After partial ablation of Amhr2+ mesenchymal cells, the oviduct failed to develop its characteristic coiling due to decreased epithelial proliferation and tubule elongation during development. The uterus displayed a reduction in size and showed decreased cellular proliferation in both epithelial and mesenchymal compartments. More importantly, in the uterus, partial ablation of Amhr2+ mesenchyme caused abnormal lumen shape and altered the direction of its long axis from the dorsal-ventral axis to the left-right axis (i.e., perpendicular to the dorsal-ventral axis). Despite these morphological defects, epithelia underwent normal differentiation into secretory and ciliated cells in the oviduct and glandular epithelial cells in the uterus. These results demonstrated that Amhr2+ mesenchyme can direct female reproductive tract morphogenesis by regulating epithelial proliferation and lumen shape without affecting the differentiation of epithelial cell types.


Asunto(s)
Mesodermo , Útero , Animales , Femenino , Ratones , Genitales Femeninos , Mesodermo/metabolismo , Morfogénesis , Oviductos , Proteínas Serina-Treonina Quinasas/metabolismo , Útero/metabolismo
11.
Phys Rev Lett ; 128(2): 021802, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35089770

RESUMEN

Collider searches for dark sectors, new particles interacting only feebly with ordinary matter, have largely focused on identifying signatures of new mediators, leaving much of dark sector structures unexplored. In particular, the existence of dark matter bound states (darkonia) remains to be investigated. This possibility could arise in a simple model in which a dark photon (A^{'}) is light enough to generate an attractive force between dark fermions. We report herein a search for a J^{PC}=1^{--} darkonium state, the ϒ_{D}, produced in the reaction e^{+}e^{-}→γϒ_{D}, ϒ_{D}→A^{'}A^{'}A^{'}, where the dark photons subsequently decay into pairs of leptons or pions, using 514 fb^{-1} of data collected with the BABAR detector. No significant signal is observed, and we set bounds on the γ-A^{'} kinetic mixing as a function of the dark sector coupling constant for 0.001

12.
Phys Rev Lett ; 128(13): 131802, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35426701

RESUMEN

Axionlike particles (ALPs) are predicted in many extensions of the standard model, and their masses can naturally be well below the electroweak scale. In the presence of couplings to electroweak bosons, these particles could be emitted in flavor-changing B meson decays. We report herein a search for an ALP, a, in the reaction B^{±}→K^{±}a, a→γγ using data collected by the BABAR experiment at SLAC. No significant signal is observed, and 90% confidence level upper limits on the ALP coupling to electroweak bosons are derived as a function of ALP mass, improving current constraints by several orders of magnitude in the range 0.175 GeV

13.
Phys Rev Lett ; 128(9): 091804, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35302790

RESUMEN

We report on the first search for electron-muon lepton flavor violation (LFV) in the decay of a b quark and b antiquark bound state. We look for the LFV decay ϒ(3S)→e^{±}µ^{∓} in a sample of 118 million ϒ(3S) mesons from 27 fb^{-1} of data collected with the BABAR detector at the SLAC PEP-II e^{+}e^{-} collider operating with a 10.36 GeV center-of-mass energy. No evidence for a signal is found, and we set a limit on the branching fraction B[ϒ(3S)→e^{±}µ^{∓}]<3.6×10^{-7} at 90% C. L. This result can be interpreted as a limit Λ_{NP}/g_{NP}^{2}>80 TeV on the energy scale Λ_{NP} divided by the coupling-squared g_{NP}^{2} of relevant new physics (NP).

14.
Nutr Cancer ; 74(6): 2075-2087, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35102803

RESUMEN

Differences in diet and lifestyle relative to those of our Paleolithic-era ancestors may explain current high incidences of chronic diseases, including colorectal cancer (CRC), in Westernized countries. Previously reported evolutionary-concordance diet and lifestyle pattern scores, reflecting closeness of diet and lifestyle patterns to those of Paleolithic-era humans, were associated with lower CRC incidence. Separate and joint associations of the scores with colorectal adenoma among men and women are unknown. To address this, we pooled data from three case-control studies of incident, sporadic colorectal adenomas (n = 771 cases, 1,990 controls), used participants' responses to food frequency and lifestyle questionnaires to calculate evolutionary-concordance diet and lifestyle pattern scores, and estimated the scores' associations with adenomas using multivariable unconditional logistic regression. The multivariable-adjusted odds ratios comparing those in the highest relative to the lowest diet and lifestyle score quintiles were 0.84 (95% confidence interval [CI] 0.62, 1.12; Ptrend:0.03) and 0.41 (95% CI 0.29, 0.59; Ptrend:<0.0001), respectively. The inverse associations were stronger for high-risk adenomas, and among those with both high relative to those with both low diet and lifestyle scores. These results suggest that more evolutionary-concordant diet and lifestyle patterns, separately and jointly, may be associated with lower risk for incident, sporadic colorectal adenoma.Supplemental data for this article is available online at https://doi.org/10.1080/01635581.2021.2002919 .


Asunto(s)
Adenoma , Neoplasias Colorrectales , Adenoma/epidemiología , Adenoma/etiología , Estudios de Casos y Controles , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/etiología , Dieta , Femenino , Humanos , Estilo de Vida , Masculino , Factores de Riesgo
15.
Nature ; 529(7586): 373-6, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26791725

RESUMEN

Antimatter continues to intrigue physicists because of its apparent absence in the observable Universe. Current theory requires that matter and antimatter appeared in equal quantities after the Big Bang, but the Standard Model of particle physics offers no quantitative explanation for the apparent disappearance of half the Universe. It has recently become possible to study trapped atoms of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter. Here we consider the charge neutrality of the antihydrogen atom. By applying stochastic acceleration to trapped antihydrogen atoms, we determine an experimental bound on the antihydrogen charge, Qe, of |Q| < 0.71 parts per billion (one standard deviation), in which e is the elementary charge. This bound is a factor of 20 less than that determined from the best previous measurement of the antihydrogen charge. The electrical charge of atoms and molecules of normal matter is known to be no greater than about 10(-21)e for a diverse range of species including H2, He and SF6. Charge-parity-time symmetry and quantum anomaly cancellation demand that the charge of antihydrogen be similarly small. Thus, our measurement constitutes an improved limit and a test of fundamental aspects of the Standard Model. If we assume charge superposition and use the best measured value of the antiproton charge, then we can place a new limit on the positron charge anomaly (the relative difference between the positron and elementary charge) of about one part per billion (one standard deviation), a 25-fold reduction compared to the current best measurement.

16.
Proc Natl Acad Sci U S A ; 116(26): 12857-12862, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31182605

RESUMEN

Plant plasma-membrane (PM) proteins are involved in several vital processes, such as detection of pathogens, solute transport, and cellular signaling. For these proteins to function effectively there needs to be structure within the PM allowing, for example, proteins in the same signaling cascade to be spatially organized. Here we demonstrate that several proteins with divergent functions are located in clusters of differing size in the membrane using subdiffraction-limited Airyscan confocal microscopy. Single particle tracking reveals that these proteins move at different rates within the membrane. Actin and microtubule cytoskeletons appear to significantly regulate the mobility of one of these proteins (the pathogen receptor FLS2) and we further demonstrate that the cell wall is critical for the regulation of cluster size by quantifying single particle dynamics of proteins with key roles in morphogenesis (PIN3) and pathogen perception (FLS2). We propose a model in which the cell wall and cytoskeleton are pivotal for regulation of protein cluster size and dynamics, thereby contributing to the formation and functionality of membrane nanodomains.


Asunto(s)
Pared Celular/metabolismo , Microdominios de Membrana/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Arabidopsis , Pared Celular/ultraestructura , Microdominios de Membrana/ultraestructura , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Imagen Individual de Molécula
17.
J Am Chem Soc ; 142(32): 13878-13885, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32673484

RESUMEN

Aqueous ring-opening metathesis polymerization (ROMP) is a powerful tool for polymer synthesis under environmentally friendly conditions, functionalization of biomacromolecules, and preparation of polymeric nanoparticles via ROMP-induced self-assembly (ROMPISA). Although new water-soluble Ru-based metathesis catalysts have been developed and evaluated for their efficiency in mediating cross metathesis (CM) and ring-closing metathesis (RCM) reactions, little is known with regards to their catalytic activity and stability during aqueous ROMP. Here, we investigate the influence of solution pH, the presence of salt additives, and catalyst loading on ROMP monomer conversion and catalyst lifetime. We find that ROMP in aqueous media is particularly sensitive to chloride ion concentration and propose that this sensitivity originates from chloride ligand displacement by hydroxide or H2O at the Ru center, which reversibly generates an unstable and metathesis inactive complex. The formation of this Ru-(OH)n complex not only reduces monomer conversion and catalyst lifetime but also influences polymer microstructure. However, we find that the addition of chloride salts dramatically improves ROMP conversion and control. By carrying out aqueous ROMP in the presence of various chloride sources such as NaCl, KCl, or tetrabutylammonium chloride, we show that diblock copolymers can be readily synthesized via ROMPISA in solutions with high concentrations of neutral H2O (i.e., 90 v/v%) and relatively low concentrations of catalyst (i.e., 1 mol %). The capability to conduct aqueous ROMP at neutral pH is anticipated to enable new research avenues, particularly for applications in biological media, where the unique characteristics of ROMP provide distinct advantages over other polymerization strategies.

18.
Phys Rev Lett ; 124(15): 152001, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32357020

RESUMEN

A study of the two-body decays B^{±}→X_{cc[over ¯]}K^{±}, where X_{cc[over ¯]} refers to one charmonium state, is reported by the BABAR Collaboration using a data sample of 424 fb^{-1}. The absolute determination of branching fractions for these decays are significantly improved compared to previous BABAR measurements. Evidence is found for the decay B^{+}→X(3872)K^{+} at the 3σ level. The absolute branching fraction B[B^{+}→X(3872)K^{+}]=[2.1±0.6(stat)±0.3(syst)]×10^{-4} is measured for the first time. It follows that B[X(3872)→J/ψπ^{+}π^{-}]=(4.1±1.3)%, supporting the hypothesis of a molecular component for this resonance.

19.
Phys Rev Lett ; 125(18): 181801, 2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33196250

RESUMEN

Many scenarios of physics beyond the standard model predict the existence of new gauge singlets, which might be substantially lighter than the weak scale. The experimental constraints on additional scalars with masses in the MeV to GeV range could be significantly weakened if they interact predominantly with leptons rather than quarks. At an e^{+}e^{-} collider, such a leptophilic scalar (ϕ_{L}) would be produced predominantly through radiation from a τ lepton. We report herein a search for e^{+}e^{-}→τ^{+}τ^{-}ϕ_{L}, ϕ_{L}→ℓ^{+}ℓ^{-} (ℓ=e, µ) using data collected by the BABAR experiment at SLAC. No significant signal is observed, and we set limits on the ϕ_{L} coupling to leptons in the range 0.04

20.
Phys Rev Lett ; 125(24): 241801, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33412062

RESUMEN

We report on a precision measurement of the ratio R_{τµ}^{ϒ(3S)}=B(ϒ(3S)→τ^{+}τ^{-})/B(ϒ(3S)→µ^{+}µ^{-}) using data collected with the BABAR detector at the SLAC PEP-II e^{+}e^{-} collider. The measurement is based on a 28 fb^{-1} data sample collected at a center-of-mass energy of 10.355 GeV corresponding to a sample of 122 million ϒ(3S) mesons. The ratio is measured to be R_{τµ}^{ϒ(3S)}=0.966±0.008_{stat}±0.014_{syst} and is in agreement with the standard model prediction of 0.9948 within 2 standard deviations. The uncertainty in R_{τµ}^{ϒ(3S)} is almost an order of magnitude smaller than the only previous measurement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA