Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Inorg Chem ; 62(32): 12741-12749, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37535840

RESUMEN

Heteroleptic copper complexes of an asymmetrical pincer ligand containing a central anionic sulfonamide donor (pyridine-2-yl-sulfonyl)(quinolin-8-yl)-amide (psq), which contains a central anionic sulfonamido donor have been prepared. Meridional κ3-N,N″,N‴ binding with the co-ligands acetate, chloride, or acetonitrile (MeCN), trans to the central sulfonamido N-donor, is revealed by the X-ray crystal structures of [Cu(OAc)(psq)(H2O)], [CuCl(psq)]2, and [Cu(psq)(MeCN)](PF6). Either overall distorted square pyramidal or octahedral geometries of the copper atom are satisfied by coordinated water in the case of the acetate complex or interactions with periphery sulfonamido oxygen atoms on adjacent molecules in the dimeric chloride and 1D polymeric acetonitrile complexes. The cyclic voltammogram (CV) of [Cu(OAc)(psq)(H2O)] shows a quasi-reversible CuII/CuI reduction at -0.930 V (vs Fc+/Fc0, MeCN), and an irreversible CuII/CuI reduction for [Cu(psq)(MeCN)](PF6) is seen at -0.838 V. This signal is split into two quasi-reversible redox processes on the addition of 2,2,2-trifluoroethanol (TFE). This suggests that TFE pushes a solution equilibrium toward a dimeric acetate complex analogous to [CuCl(psq)]2, which shows two quasi-reversible waves at -0.666 V and -0.904 V vs Fc+/Fc0 consistent with its dimeric solid-state structure. A comparison of the CVs of [Cu(OAc)(psq)(H2O)] under either a N2 or an O2 atmosphere revealed that this complex catalyzes turnover electro-reduction of O2 to H2O2 and H2O. The rate of reaction increases on addition of a weak organic acid, and a coulombic efficiency of 48% for H2O2 was determined by iodometric titration. We propose that a CuI complex formed on electroreduction binds O2 to yield an intermediate superoxide complex. On electron and proton transfer to this species, a bifurcated route back to the O2-activating CuI complex is feasible with either release of H2O2 or O-O cleavage resulting in the liberation of H2O. The CuI complex is regenerated by subsequent reduction and protonation to close the cycle.

2.
Inorg Chem ; 62(44): 18219-18227, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37877669

RESUMEN

The tetradentate tripodal ligand scaffold is capable of supporting the expected geometries of the copper ion during the oxygen reduction reaction (ORR) catalysis. As such, we probed the reactivity of copper complexes with these types of ligands by electronically and structurally tweaking the tris(pyridin 2-ylmethyl)amine (tmpa) scaffold by progressively replacing the terminal pyridines with carboxylate donors. This work shows that systems with one carboxylato donor (bpg = bis(pyridin-2-ylmethyl)glycine), (bpp = (3-(bis(pyridin-2-ylmethyl)amino)propanoic acid)) are active in electrocatalyzing the homogeneous ORR under circumneutral aqueous conditions. Turnover frequencies in the range from 105 to 106 s-1, on par with that for Cu-tmpa under identical conditions, were obtained. It is noteworthy that the CuII/CuI redox potentials for the Cu-bpg, Cu-bpp, and Cu-tmpa systems in phosphate-buffered water (pH 7, under Ar) are similar at -0.409, -0.375, and -0.401 V vs Ag/AgCl, respectively. This is rationalized by the influence of the Lewis acidity of the copper ions on the water coligand. Corroborating this are pKa values for [Cu(tmpa)(H2O)]2+, Cu(bpg)(H2O)]+, and [Cu(bpp)(H2O)]+ of 6.6, 8.8, and 10.2, respectively. Thus, the overall charge of the solution species for all three complexes will be +1 at pH 7 and this will be an important determinant for the redox potentials and, in turn, the catalytic overpotentials, which are also similar. A cis carboxylato donor offers H-bonding possibilities for exogenous resting state water and intermediate hydroperoxo coligands. This is reflected by the higher pKa values for Cu-bpp and Cu-bpg compared with that for Cu-tmpa, with the Cu-bpp system furnishing the least strained H-bonding.

3.
Angew Chem Int Ed Engl ; 62(38): e202305759, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37338105

RESUMEN

Artificial metallo-nucleases (AMNs) are promising DNA damaging drug candidates. Here, we demonstrate how the 1,2,3-triazole linker produced by the Cu-catalysed azide-alkyne cycloaddition (CuAAC) reaction can be directed to build Cu-binding AMN scaffolds. We selected biologically inert reaction partners tris(azidomethyl)mesitylene and ethynyl-thiophene to develop TC-Thio, a bioactive C3 -symmetric ligand in which three thiophene-triazole moieties are positioned around a central mesitylene core. The ligand was characterised by X-ray crystallography and forms multinuclear CuII and CuI complexes identified by mass spectrometry and rationalised by density functional theory (DFT). Upon Cu coordination, CuII -TC-Thio becomes a potent DNA binding and cleaving agent. Mechanistic studies reveal DNA recognition occurs exclusively at the minor groove with subsequent oxidative damage promoted through a superoxide- and peroxide-dependent pathway. Single molecule imaging of DNA isolated from peripheral blood mononuclear cells shows that the complex has comparable activity to the clinical drug temozolomide, causing DNA damage that is recognised by a combination of base excision repair (BER) enzymes.


Asunto(s)
Química Clic , Cobre , Cobre/química , Leucocitos Mononucleares/metabolismo , Ligandos , ADN/química , Azidas/química
4.
Chemistry ; 28(9): e202104044, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-34958482

RESUMEN

Boronic acids are Lewis acids that exist in equilibrium with boronate forms in aqueous solution. Here we experimentally and computationally investigated the Lewis acidity of 2,6-diarylphenylboronic acids; specially designed phenylboronic acids that possess two flanking aromatic rings with tunable aromatic character. Hammett analysis of 2,6-diarylphenylboronic acids reveals that their Lewis acidity remains unchanged upon the introduction of EWG/EDG at the distant para position of the flanking aromatic rings. Structural and computational studies demonstrate that polar-π interactions and solvation effects contribute to the stabilization of boronic acids and boronate forms by aromatic rings. Our physical-organic chemistry work highlights that boronic acids and boronates can be stabilized by aromatic systems, leading to an important molecular knowledge for rational design and development of boronic acid-based catalysts and inhibitors of biomedically important proteins.


Asunto(s)
Ácidos Borónicos , Ácidos de Lewis , Ácidos Borónicos/química , Proteínas/química
5.
J Org Chem ; 87(9): 6087-6096, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35471006

RESUMEN

Arene-arene interactions are fundamentally important in molecular recognition. To precisely probe arene-arene interactions in cyclophanes, we designed and synthesized (2,6-phenol)paracyclophanes and (2,6-aniline)paracyclophanes that possess two aromatic rings in close proximity. Fine-tuning the aromatic character of one aromatic ring by fluorine substituents enables investigations on the intramolecular interactions between the electron-rich phenol and aniline with tetra-H- and tetra-F-substituted benzene. pKa measurements revealed that the tetra-F-template increases the acidity of the phenol (ΔpKa = 0.55). X-ray crystallography and computational analyses demonstrated that all [3,3]metaparacyclophanes adopt cofacial parallel conformations, implying the presence of π-π stacking interactions. Advanced quantum chemical analyses furthermore revealed that both electrostatic interactions and orbital interactions provide the key contribution to the structure and stability of [3,3]metaparacyclophanes.


Asunto(s)
Compuestos de Anilina , Fenoles , Cristalografía por Rayos X , Conformación Molecular , Electricidad Estática
6.
J Am Chem Soc ; 143(37): 15400-15412, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34491045

RESUMEN

Aqueous solutions of the iron(III) complex of N,N,N'-tris(2-pyridylmethyl)ethylenediamine-N'-acetate (tpena) react with hypochlorite (ClO-) to produce the reactive high-valent [FeIV(O)(tpena)]+. Under catalytic conditions, in bicarbonate-buffered media (pH 8) with a set ionic strength (10 mM NaCl), kinetic analysis shows that two equivalents of [FeIV(O)(tpena)]+ per one ClO- are produced, with benign chloride ions the only byproduct. An unprecedented supramolecular activation of ClO- by {(HCO3)⊂[(tpena)FeIII(µ-O)FeIII(Htpena)]}2+ is proposed. This mode of activation has great advantage for use in the catalytic oxidation of C-H bonds in water since: (i) the catalyst scaffold is protected from oxidative degradation and (ii) undesirable radical side reactions which produce toxic chlorinated compounds are circumvented by this novel coactivation of water and ClO-. The unique activation mechanism by the Fe-tpena system makes possible the destruction of organic contaminants as an add-on technology to water disinfection by chlorination, demonstrated here through (i) the catalytic oxidation of micropollutant metaldehyde, and (ii) mineralization of the model substrate formate. The resting-state speciation at pH 3, 5, 7, and 9, as well as the catalytically active iron speciation are characterized with Mössbauer and EPR spectroscopy and supported by DFT calculations. Our study provides fundamentally new insights into the design and activation mode of iron-based catalysts relevant to applications in water remediation.

7.
Chemistry ; 27(18): 5721-5729, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33377554

RESUMEN

Aromatic rings form energetically favorable interactions with many polar groups in chemical and biological systems. Recent molecular studies have shown that sulfonamides can chelate metal ions and form hydrogen bonds, however, it is presently not established whether the polar sulfonamide functionality also interacts with aromatic rings. Here, synthetic, spectroscopic, structural, and quantum chemical analyses on 2,6-diarylbenzenesulfonamides are reported, in which two flanking aromatic rings are positioned close to the central sulfonamide moiety. Fine-tuning the aromatic character by substituents on the flanking rings leads to linear trends in acidity and proton affinity of sulfonamides. This physical-organic chemistry study demonstrates that aromatic rings have a capacity to stabilize sulfonamides via through-space NH-π interactions. These results have implications in rational drug design targeting electron-rich aromatic rings in proteins.


Asunto(s)
Proteínas , Sulfonamidas , Enlace de Hidrógeno , Modelos Moleculares , Protones
8.
Inorg Chem ; 60(3): 1975-1984, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33470794

RESUMEN

A series of iron(IV) oxo complexes, which differ in the donor (CH2py or CH2COO-) cis to the oxo group, three with hemilabile pendant donor/second coordination sphere base/acid arms (pyH/py or ROH), have been prepared in water at pH 2 and 7. The νFe═O values of 832 ± 2 cm-1 indicate similar FeIV═O bond strengths; however, different reactivities toward C-H substrates in water are observed. HAT occurs at rates that differ by 1 order of magnitude with nonclassical KIEs (kH/kD = 30-66) consistent with hydrogen atom tunneling. Higher KIEs correlate with faster reaction rates as well as a greater thermodynamic stability of the iron(III) resting states. A doubling in rate from pH 7 to pH 2 for substrate C-H oxidation by the most potent complex, that with a cis-carboxylate donor, [FeIVO(Htpena)]2+, is observed. Supramolecular assistance by the first and second coordination spheres in activating the substrate is proposed. The lifetime of this complex in the absence of a C-H substrate is the shortest (at pH 2, 3 h vs up to 1.3 days for the most stable complex), implying that slow water oxidation is a competing background reaction. The iron(IV)═O complex bearing an alcohol moiety in the second coordination sphere displays significantly shorter lifetimes due to a competing selective intramolecular oxidation of the ligand.

9.
J Am Chem Soc ; 142(20): 9471-9481, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32312041

RESUMEN

Nine metal-organic frameworks have been prepared with the hexagon-shaped linker 1,2,3,4,5,6-hexakis(4-carboxyphenyl)benzene (H6cpb) by solvothermal reactions in dimethylformamide (dmf) or dimethylacetamide (dmac) with acetic acid or formic acid as modulators: [Bi2(cpb)(acetato)2(dmf)2]·2dmf CTH-6 forms a rtl-net; 2(H2NMe2)[Cu2(cpb)] CTH-7 forms a kgd-net; [Fe4(cpb)(acetato)2(dmf)4] CTH-8 and [Co4(cpb)(acetato)2(dmf)4] CTH-9 are isostructural and form yav-nets; 2(HNEt3)[Fe2(cpb)] CTH-10 and the two polymorphs of 2(H2NMe2)[Zn2(cpb)]·1.5dmac, Zn-MOF-888 and CTH-11, show kgd-nets; [Cu2(cpb)(acetato)2(dmf)2]·2dmf, CTH-12, forms a mixed coordination and hydrogen-bonded sql-net; and 2(H2NMe2)[Zn2(cpb)] CTH-13, a similarly mixed yav-net. Surface area values (Brunauer-Emmett-Teller, BET) range from 34 m2 g-1 for CTH-12 to 303 m2 g-1 for CTH-9 for samples activated at 120 °C in dynamic vacuum. All compounds show normal (10-fold higher) molar CO2 versus N2 uptake at 298 K, except the 19-fold CO2 uptake for CTH-12 containing Cu(II) dinuclear paddle-wheels. We also show how perfect hexagons and triangles can combine to a new 3D topology laf, a model of which gave us the idea of foldable network topologies, as the laf-net can fold into a 2D form while retaining the local geometry around each vertex. Other foldable nets identified are cds, cds-a, ths, sqc163, clh, jem, and tfc covering the basic polygons and their combinations. The impact of this concept on "breathing" MOFs is discussed. I2 sorption, both from gas phase and from MeOH solution, into CTH-7 were studied by time of flight secondary ion mass spectrometry (ToF-SIMS) on dried crystals. I2 was shown to have penetrated the crystals, as layers were consecutively peeled off by the ion beam. We suggest ToF-SIMS to be a method for studying sorption depth profiles of MOFs.

10.
Chemphyschem ; 21(11): 1092-1100, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32253802

RESUMEN

Molecular recognition between polar groups and aromatic molecules is fundamentally important to rational drug design. Although it has been well established that many polar functionalities interact with electron-rich aromatic residues through energetically favorable polar-π interactions, there is a limited understanding of the association between thiols and aromatic systems. Herein we report physical-organic chemistry studies on 2,6-diarylthiophenols that possess the central thiophenol ring and two flanking aromatic rings with tunable electronic properties caused by substituents at distant para position. Hammett analysis revealed that pKa values and proton affinities correlate well with Hammett sigma values of substituents. Additional energy decomposition analysis supported the conclusion that both through-space SH-π interactions and S- -π interactions contribute to intramolecular stabilization of 2,6-diarylthiophenols.

11.
Chemphyschem ; 21(11): 1080, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32496661

RESUMEN

The front cover artwork is provided by Marijn Maas from the group of Prof. Jasmin Mecinovic (University of Southern Denmark). The image shows the stabilization of thiols by aromatic rings, as a result of energetically favorable SH-π interactions in a designed small molecule and in proteins. Read the full text of the Article at 10.1002/cphc.202000132.

12.
Inorg Chem ; 59(22): 16281-16290, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33021370

RESUMEN

The high-spin (S = 5/2) meridional diastereoisomer of [FeIII(tpena)]2+ (tpena = N,N,N'-tris(2-pyridylmethyl)ethylendiamine-N'-acetate), mer-[Fe(tpena)]2+, undergoes photolytic CO2 release to produce an iron(II) intermediate of a radical dihydroimidazopyridine ligand (L•). The structure of this unprecedented transient iron(II)(L•) complex is supported by UV-vis and Mössbauer spectroscopies, DFT calculations, as well as the X-ray structural characterization of an µ-oxo iron(III) complex of the oxidized derivative of L•, namely, [FeIII2O(Cl)2(L+)2](ClO4)4(MeCN)2 (L+ = 2-(2-(bis(pyridin-2-ylmethyl)amino)ethyl)-2,3-dihydro-1H-imidazo[1,5-a]pyridin-4-ium). [FeIII2O(Cl)2(L+)2]4+ is obtained only in the absence of O2. Under aerobic conditions, O2 will intercept the iron(II)(L•) complex to form a putative Fe(III)-alkylperoxide complex which cascades to an iron(II) complex of SBPy3 (SBPy3 = N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-aldimine). Thus, through different oxidative pathways, the unknown ligand L+ or SBPy3 forms by loss of a one-carbon-atom or a two-carbon-atom unit, respectively, from the glycyl arm of tpena. Acceleration of the photodecarboxylation step is achieved by addition of thiocyanate because of transient formation of a more photoreactive NCS- adduct of [Fe(tpena)]2+. This has allowed for kinetic observation of the reaction of [FeII(L•)]2+ with O2 which is, unexpectedly, promoted also by light. We propose that this corresponds to the energy needed for the conversion of the ring-closed radical ligand L• to a ring-opened tautomer to allow for O2 insertion between the C and Fe atoms of the iron(II) complex.

13.
Langmuir ; 35(38): 12339-12349, 2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31470693

RESUMEN

A mixed valence diiron(II/III) complex with the ligand 2,6-bis{bis[(2-pyridinylmethyl)amino]methyl}phenol (bppH) has been covalently anchored onto graphene using a mild in situ microwave-assisted diazonium coupling through an aryl amino precursor and isoamyl nitrite. A dinuclear iron complex is then formed by complexation of the grafted bppH-graphene material with iron(II) in the presence of dioxygen. X-ray photoelectron spectroscopy (XPS), atomic force microscopy, cyclic voltammetry, scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy confirm the formation of the anchored ligand and derivative diiron complexes. Semiquantitative XPS analysis shows an average bppH ligand bulk loading of 0.33 mmol/g, corresponding to a significant 20.7 wt % of the functionalized material consisting of grafted moieties. EPR measurements reveal the existence of a strong isotropic S = 1/2 spin center associated with the graphene lattice, together with a much weaker S = 5/2 signal, associated with the iron(III) center of the grafted complex. The grafted complex is redox-active with surface-confined FeIIFeII → FeIIFeIII (+0.56 V vs NHE), FeIIFeIII → FeIIIFeIII (+0.73 V), and FeIIIFeIII → FeIIIFeIV (+0.95 V) redox processes accessible, with an estimated surface coverage of 58 pmol cm-2 established from the electrochemical measurements.

14.
Inorg Chem ; 58(14): 8983-8994, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31251041

RESUMEN

The FeIII/FeII redox potentials for [Fe(tpen)]2+/3+, [Fe(tpena)]+/2+, and [Fe(tpenO)]+/2+ (N-R-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine, where R = CH2C6H4N, CH2COO-, CH2CH2O-, respectively) span 470 mV with the oxidation potentials following the order [FeII(tpenO)]+ (MeOH) < [FeII(tpena)]+ (MeCN) < [FeII(tpen)]2+ (MeCN). In their +3 oxidation states the complexes react with 1 equiv of H2O2 to give the purple [FeIII(OOH)(HL)]n+ (n = 2 for L = tpena, tpenO; n = 3 for L = tpen). A pyridine arm is decoordinated in these complexes, furnishing a second coordination sphere base which is protonated at ambient pH. The lifetimes of these transient species depend on how readily the substrate (sometimes the solvent) is oxidized and reflect the trend in both the O-O bond lability and oxidizing potency of the putative iron-based oxidant derived from the iron(III) peroxides. In methanol solution, [FeIII(tpenO)]2+ and [FeIII(tpena)]2+ exist in their Fe(III) states and hence the formation of [FeIII(OOH)(Htpena)]2+ and [FeIII(OOH)(HtpenO)]2+ is instantaneous. This is in contrast to the short lag time that occurs before adduct formation between [FeII(tpen)]2+ and H2O2 due to the requisite prior oxidation of the solution-state iron(II) complex to its iron(III) state. Stabilization of the +3 iron oxidation state in the resting state catalysts affords complexes that activate H2O2 more readily with the consequence of higher yields in the oxidation of the C-H bonds using H2O2 as terminal oxidant. The presence of a cis monodentate carboxylato donor increases the rate of oxidation by hydrogen atom transfer in comparison to the systems with an alkoxo or pyridine in this position. Competing with substrate oxidation is the oxidative modification of the alkoxido group in [FeIII(tpenO)]2+, converting it to a carboxylato group in the presence of H2O2: in effect, transforming tpenO to tpena.

15.
J Am Chem Soc ; 140(43): 14150-14160, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30347152

RESUMEN

The iron(III) complex [Fe(tpena)]2+ (tpena = N, N, N'-tris(2-pyridylmethyl)ethylendiamine- N'-acetate) undergoes irreversible O2-dependent N-demethylcarboxylation to afford [FeII(SBPy3)(MeCN)]2+ (SBPy3 = N, N-bis(2-pyridylmethyl)amine- N-ethyl-2-pyridine-2-aldimine), when irradiated with near-UV light. The loss of a mass equivalent to the glycyl group in a process involving consecutive C-C and C-N cleavages is documented by the measurement of the sequential production of CO2 and formaldehyde, respectively. Time-resolved UV-vis absorption, Mössbauer, EPR, and Raman spectroscopy have allowed the spectroscopic characterization of two iron-based intermediates along the pathway. The first of these, proposed to be a low-spin iron(II)-radical ligand complex, reacts with O2 in the rate-determining step to produce a putative alkylperoxide complex. DFT calculations suggest that this evolves into an Fe(IV)-oxo species, which can abstract a hydrogen atom from a cis methylene group of the ligand to give the second spectroscopically identified intermediate, a high-spin iron(III)-hydroxide of the product oxidized ligand, [FeIII(OH)(SBPy3)]2+. Reduction and exchange of the cohydroxo/water ligand produces the crystallographically characterized products [FeII(SBPy3)(X)]2+/3+, X = MeCN, [Zn(tpena)]+.

16.
Chemistry ; 24(20): 5134-5145, 2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-29086452

RESUMEN

The reactivity of [FeIII (tpena)]2+ (tpena=N,N,N'-tris(2-pyridylmethyl)ethylenediamine-N'-acetate) as a catalyst for oxidation reactions depends on its ratio to the terminal oxidant H2 O2 and presence or absence of sacrificial substrates. The outcome can be switched between: 1) catalysed H2 O2 disproportionation, 2) selective catalytic oxidation of methanol or benzyl alcohol to the corresponding aldehyde, or 3) oxidative decomposition of the tpena ligand. A common mechanism is proposed involving homolytic O-O cleavage in the detected transient purple low-spin (S=1/2 ) [(tpenaH)FeIII O-OH]2+ . The resultant iron(IV) oxo and hydroxyl radical both participate in controllable hydrogen-atom transfer (HAT) reactions. Consistent with the presence of a weaker σ-donor carboxylate ligand, the most pronounced difference in the spectroscopic properties of [Fe(OOH)(tpenaH)]2+ and its conjugate base, [Fe(OO)(tpenaH)]+ , compared to non-heme iron(III) peroxide analogues supported by neutral multidentate N-only ligands, are slightly blue-shifted maxima of the visible absorption band assigned to ligand-to-metal charge-transfer (LMCT) transitions and, corroborating this, lower FeIII /FeII redox potentials for the pro-catalysts.

17.
Inorg Chem ; 56(24): 14936-14947, 2017 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-29039183

RESUMEN

The nonheme iron(IV) oxo complex [FeIV(O)(tpenaH)]2+ and its conjugate base [FeIV(O)(tpena)]+ [tpena- = N,N,N'-tris(2-pyridylmethyl)ethylenediamine-N'-acetate] have been prepared electrochemically in water by bulk electrolysis of solutions prepared from [FeIII2(µ-O)(tpenaH)2](ClO4)4 at potentials over 1.3 V (vs NHE) using inexpensive and commercially available carbon-based electrodes. Once generated, these iron(IV) oxo complexes persist at room temperature for minutes to half an hour over a wide range of pH values. They are capable of rapidly decomposing aliphatic and aromatic alcohols, alkanes, formic acid, phenols, and the xanthene dye rhodamine B. The oxidation of formic acid to carbon dioxide demonstrates the capacity for total mineralization of organic compounds. A radical hydrogen-atom-abstraction mechanism is proposed with a reactivity profile for the series that is reminiscent of oxidations by the hydroxyl radical. Facile regeneration of [FeIV(O)(tpenaH)]2+/ [FeIV(O)(tpena)]+ and catalytic turnover in the oxidation of cyclohexanol under continuous electrolysis demonstrates the potential of the application of [FeIII(tpena)]2+ as an electrocatalyst. The promiscuity of the electrochemically generated iron(IV) oxo complexes, in terms of the broad range of substrates examined, represents an important step toward the goal of cost-effective electrocatalytic water purification.

18.
Solid State Nucl Magn Reson ; 87: 29-37, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28759801

RESUMEN

Recent advances in computational methodology allowed for first-principles calculations of the nuclear shielding tensor for a series of paramagnetic nickel(II) acetylacetonate complexes, [Ni(acac)2L2] with L = H2O, D2O, NH3, ND3, and PMe2Ph have provided detailed insight into the origin of the paramagnetic contributions to the total shift tensor. This was employed for the assignment of the solid-state 1,2H and 13C MAS NMR spectra of these compounds. The two major contributions to the isotropic shifts are by orbital (diamagnetic-like) and contact mechanism. The orbital shielding, contact, as well as dipolar terms all contribute to the anisotropic component. The calculations suggest reassignment of the 13C methyl and carbonyl resonances in the acac ligand [Inorg. Chem.53, 2014, 399] leading to isotropic paramagnetic shifts of δ(13C) ≈ 800-1100 ppm and ≈180-300 ppm for 13C for the methyl and carbonyl carbons located three and two bonds away from the paramagnetic Ni(II) ion, respectively. Assignment using three different empirical correlations, i.e., paramagnetic shifts, shift anisotropy, and relaxation (T1) were ambiguous, however the latter two support the computational results. Thus, solid-state NMR spectroscopy in combination with modern quantum-chemical calculations of paramagnetic shifts constitutes a promising tool for structural investigations of metal complexes and materials.

19.
Chemistry ; 22(11): 3810-20, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26598789

RESUMEN

The iron(III) complex of hexadentate N,N,N'-tris(2-pyridylmethyl)ethylendiamine-N'-acetate (tpena(-) ) is a more effective homogenous catalyst for selective sulfoxidation and epoxidation with insoluble iodosylbenzene, [PhIO]n , compared with soluble methyl-morpholine-N-oxide (NMO). We propose that two molecules of [Fe(tpena)](2+) cooperate to solubilize PhIO, extracting two equivalents to form the halogen-bonded dimeric {[Fe(tpena)OIPh]2}(4+). The closest intradimeric I⋅⋅⋅O distance, 2.56 Å, is nearly 1 Šless than the sum of the van de Waals radii of these atoms. A correlation of the rates of the reaction of {[Fe(tpena)OIPh]2}(4+) with para-substituted thioanisoles indicate that this species is a direct metal-based oxidant rather than a derived ferryl or perferryl complex. A study of gas-phase reactions indicate that an ion at m/z=231.06100 originates from solution-state {[Fe(tpena)OIPh]2}(4+) and is ascribed to [Fe(III) (tpenaO)](2+), derived from an intramolecular O atom insertion into an Fe-tpena donor bond. Proposed ion pairs, {[Fe(tpena)OIPh]Cl}(+) and {[Fe(tpena)OIPh]ClO4}(+), are more stable than native [Fe(tpena)OIPh](2+) ions, suggesting that halogen-bonding, as for the solution and solid states, operates also in the gas phase.

20.
Inorg Chem ; 55(12): 5904-13, 2016 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-27280361

RESUMEN

Reactions of Fe(II) precursors with the tetradentate ligand S,S'-bis(2-pyridylmethyl)-1,2-thioethane (bpte) and monodentate NCE(-) coligands afforded mononuclear complexes [Fe(bpte)(NCE)2] (1, E = S; 2, E = Se; 3, E = BH3) that exhibit temperature-induced spin crossover (SCO). As the ligand field strength increases from NCS(-) to NCSe(-) to NCBH3(-), the SCO shifts to higher temperatures. Complex 1 exhibits only a partial (15%) conversion from the high-spin (HS) to the low-spin (LS) state, with an onset around 100 K. Complex 3 exhibits a complete SCO with T1/2 = 243 K. While the γ-2 polymorph also shows the complete SCO with T1/2 = 192 K, the α-2 polymorph exhibits a two-step SCO with the first step leading to a 50% HS → LS conversion with T1/2 = 120 K and the second step proceeding incompletely in the 80-50 K range. The amount of residual HS fraction of α-2 that remains below 60 K depends on the cooling rate. Fast flash-cooling allows trapping of as much as 45% of the HS fraction, while slow cooling leads to a 14% residual HS fraction. The slowly cooled sample of α-2 was subjected to irradiation in the magnetometer cavity resulting in a light-induced excited spin state trapping (LIESST) effect. As demonstrated by Mössbauer spectroscopy, an HS fraction of up to 85% could be achieved by irradiation at 4.2 K.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA