Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Expert Rev Proteomics ; 14(10): 917-929, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28759730

RESUMEN

INTRODUCTION: In several biomedical research fields, the cross-linking of peptides and proteins has an important impact on health and wellbeing. It is therefore of crucial importance to study this class of post-translational modifications in detail. The huge potential of mass spectrometric technologies in the mapping of these protein-protein cross-links is however overshadowed by the challenges that the field has to overcome. Areas covered: In this review, we summarize the different pitfalls and challenges that the protein-protein cross-linking field is confronted with when using mass spectrometry approaches. We additionally focus on native disulfide bridges as an example and provide some examples of cross-links that are important in the biomedical field. Expert commentary: The current flow of methodological improvements, mainly from the chemical cross-linking field, has delivered a significant contribution to deciphering native and insult-induced cross-links. Although an automated data analysis of proteome-wide peptide cross-linking is currently only possible in chemical cross-linking experiments, the field is well on the way towards a more automated analysis of native and insult-induced cross-links in raw mass spectrometry data that will boost its potential in biomedical applications.


Asunto(s)
Disulfuros/química , Espectrometría de Masas/métodos , Procesamiento Proteico-Postraduccional , Proteoma/química , Cisteína/química , Cisteína/metabolismo , Disulfuros/metabolismo , Humanos , Proteoma/metabolismo
2.
Food Chem X ; 19: 100800, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37780262

RESUMEN

Formation of lysinoalanine protein-protein crosslinks during food processing adversely impacts nutritional value. However, mapping lysinoalanine directly in food is challenging. We characterized the fragmentation pattern of lysinoalanine crosslinks in synthetic peptide models over a range of pH and time treatments using mass spectrometry. A putative diagnostic ion resulting from the cleavage of the α-carbon and ß-carbon of lysinoalanine is identified in MALDI MS/MS spectra. This represents the first step in mapping lysinoalanine in real food samples with higher precision than currently identifiable through standard or customized software. We then determined a correlated trend in the reduction of disulfide bonds and formation of lysinoalanine with increasing pH and time. Mapping lysinoalanine formation is critical to enhance our understanding of molecular processes impacting the nutritional value of foods, including notably in the development of protein alternatives that use alkaline treatment to extract protein isolates.

3.
Food Chem ; 408: 135229, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36563618

RESUMEN

The properties of milk proteins differ between mammalian species. ß-Lactoglobulin (ßlg) proteins from caprine and bovine milk are sequentially and structurally highly similar, yet their physicochemical properties differ, particularly in response to pH. To resolve this conundrum, we compared the dynamics of both the monomeric and dimeric states for each homologue at pH 6.9 and 7.5 using hydrogen/deuterium exchange experiments. At pH 7.5, the rate of exchange is similar across both homologues, but at pH 6.9 the dimeric states of the bovine ßlg B variant homologue have significantly more conformational flexibility compared with caprine ßlg. Molecular dynamics simulations provide a mechanistic rationale for the experimental observations, revealing that variant-specific substitutions encode different conformational ensembles with different dynamic properties consistent with the hydrogen/deuterium exchange experiments. Understanding the dynamic differences across ßlg homologues is essential to understand the different responses of these milks to processing, human digestion, and differences in immunogenicity.


Asunto(s)
Cabras , Lactoglobulinas , Humanos , Animales , Lactoglobulinas/genética , Lactoglobulinas/química , Deuterio , Cabras/genética , Hidrógeno , Concentración de Iones de Hidrógeno
4.
Biochem J ; 400(2): 359-66, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16872276

RESUMEN

DHDPS (dihydrodipicolinate synthase) catalyses the branch point in lysine biosynthesis in bacteria and plants and is feedback inhibited by lysine. DHDPS from the thermophilic bacterium Thermotoga maritima shows a high level of heat and chemical stability. When incubated at 90 degrees C or in 8 M urea, the enzyme showed little or no loss of activity, unlike the Escherichia coli enzyme. The active site is very similar to that of the E. coli enzyme, and at mesophilic temperatures the two enzymes have similar kinetic constants. Like other forms of the enzyme, T. maritima DHDPS is a tetramer in solution, with a sedimentation coefficient of 7.2 S and molar mass of 133 kDa. However, the residues involved in the interface between different subunits in the tetramer differ from those of E. coli and include two cysteine residues poised to form a disulfide bond. Thus the increased heat and chemical stability of the T. maritima DHDPS enzyme is, at least in part, explained by an increased number of inter-subunit contacts. Unlike the plant or E. coli enzyme, the thermophilic DHDPS enzyme is not inhibited by (S)-lysine, suggesting that feedback control of the lysine biosynthetic pathway evolved later in the bacterial lineage.


Asunto(s)
Hidroliasas/química , Hidroliasas/metabolismo , Thermotoga maritima/enzimología , Cristalografía por Rayos X , Estabilidad de Enzimas , Hidroliasas/antagonistas & inhibidores , Cinética , Modelos Moleculares , Estructura Cuaternaria de Proteína , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA