Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nano Lett ; 22(3): 979-988, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35061402

RESUMEN

Antisolvent-assisted spin coating has been widely used for fabricating metal halide perovskite films with smooth and compact morphology. However, localized nanoscale inhomogeneities exist in these films owing to rapid crystallization, undermining their overall optoelectronic performance. Here, we show that by relaxing the requirement for film smoothness, outstanding film quality can be obtained simply through a post-annealing grain growth process without passivation agents. The morphological changes, driven by a vaporized methylammonium chloride (MACl)-dimethylformamide (DMF) solution, lead to comprehensive defect elimination. Our nanoscale characterization visualizes the local defective clusters in the as-deposited film and their elimination following treatment, which couples with the observation of emissive grain boundaries and excellent inter- and intragrain optoelectronic uniformity in the polycrystalline film. Overcoming these performance-limiting inhomogeneities results in the enhancement of the photoresponse to low-light (<0.1 mW cm-2) illumination by up to 40-fold, yielding high-performance photodiodes with superior low-light detection.

2.
J Am Chem Soc ; 143(51): 21549-21559, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34919382

RESUMEN

Phosphorene nanoribbons (PNRs) have been widely predicted to exhibit a range of superlative functional properties; however, because they have only recently been isolated, these properties are yet to be shown to translate to improved performance in any application. PNRs show particular promise for optoelectronics, given their predicted high exciton binding energies, tunable bandgaps, and ultrahigh hole mobilities. Here, we verify the theorized enhanced hole mobility in both solar cells and space-charge-limited-current devices, demonstrating the potential for PNRs improving hole extraction in universal optoelectronic applications. Specifically, PNRs are demonstrated to act as an effective charge-selective interlayer by enhancing hole extraction from polycrystalline methylammonium lead iodide (MAPbI3) perovskite to the poly(triarylamine) semiconductor. Introducing PNRs at the hole-transport/MAPbI3 interface achieves fill factors above 0.83 and efficiencies exceeding 21% for planar p-i-n (inverted) perovskite solar cells (PSCs). Such efficiencies are typically only reported for single-crystalline MAPbI3-based inverted PSCs. Methylammonium-free PSCs also benefit from a PNR interlayer, verifying applicability to architectures incorporating mixed perovskite absorber layers. Device photoluminescence and transient absorption spectroscopy are used to demonstrate that the presence of the PNRs drives more effective carrier extraction. Isolation of the PNRs in space-charge-limited-current hole-only devices improves both hole mobility and conductivity, demonstrating applicability beyond PSCs. This work provides primary experimental evidence that the predicted superlative functional properties of PNRs indeed translate to improved optoelectronic performance.

3.
Small ; 12(15): 1993-2000, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26918520

RESUMEN

Coplanar radio frequency Schottky diodes based on solution-processed C60 and ZnO semiconductors are fabricated via adhesion-lithography. The development of a unique asymmetric nanogap electrode architecture results in devices with a high current rectification ratio (10(3) -10(6) ), low operating voltage (<3 V), and cut-off frequencies of >400 MHz. Device fabrication is scalable and can be performed at low temperatures even on plastic substrates with very high yield.

4.
Angew Chem Int Ed Engl ; 55(25): 7148-51, 2016 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-27121536

RESUMEN

Arsole-containing conjugated polymers are a practically unexplored class of materials despite the high interest in their phosphole analogues. Herein we report the synthesis of the first dithieno[3,2-b;2',3'-d]arsole derivative, and demonstrate that it is stable to ambient oxidation in its +3 oxidation state. A soluble copolymer is obtained by a palladium-catalyzed Stille polymerization and demonstrated to be a p-type semiconductor with promising hole mobility, which was evaluated by field-effect transistor measurements.

5.
ACS Appl Mater Interfaces ; 16(26): 33838-33845, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961574

RESUMEN

Perovskite photodetectors, devices that convert light to electricity, require good extraction and low noise levels to maximize the signal-to-noise ratio. Self-assembling monolayers (SAMs) have been shown to be effective hole transport materials thanks to their atomic layer thickness, transparency, and energetic alignment with the valence band of the perovskite. While efforts are being made to reduce noise levels via the active layer, little has been done to reduce noise via SAM interfacial engineering. Herein, we report hybrid perovskite photodetectors with high detectivity by blending two different SAMs (2-PACz and Me-4PACz). We find that with a 1:1 2-PACz:Me-4PACz ratio (by weight), the devices achieved a low noise of 1 × 10-13 A Hz-1/2, a high responsivity of 0.41 A W-1 at 710 nm, and a specific detectivity of 6.4 × 1011 Jones at 710 nm at -0.5 V, outperforming its two counterparts. In addition to the improved noise levels in these devices, impedance spectroscopy revealed that higher recombination lifetimes of 0.85 µs were achieved for the 1:1 2-PACz:Me-4PACz-based photodetectors, confirming their low defect density.

6.
Adv Mater ; : e2401206, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888509

RESUMEN

Lead halide perovskite and organic semiconductors are promising classes of materials for photodetector (PD) applications. State-of-the-art perovskite PDs have performance metrics exceeding silicon PDs in the visible. While organic semiconductors offer bandgap tunability due to their chemical design with detection extended into the near-infrared (NIR), perovskites are limited to the visible band and the first fraction of the NIR spectrum. In this work, perovskite-organic heterojunction (POH) PDs with absorption up to 950 nm are designed by the dual contribution of perovskite and the donor:acceptor bulk-heterojunction (BHJ), without any intermediate layer. The effect of the energetics of the donor materials is systematically studied on the dark current (Jd) of the device by using the PBDB-T polymer family. Combining the experimental results with drift-diffusion simulations, it is shown that Jd in POH devices is limited by thermal generation via deep trap states in the BHJ. Thus, the best performance is obtained for the PM7-based POH, which delivers an ultra-low noise current of 2 × 10-14 A Hz-1/2 and high specific detectivity of 4.7 × 1012 Jones in the NIR. Last, the application of the PM7-based POH devices as NIR pulse oximeter with high-accuracy heartbeat monitoring at long-distance of 2 meters is demonstrated.

7.
Inorg Chem ; 52(17): 9994-9, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23947333

RESUMEN

Reactions of Ta(NMe2)5 and n-propylamine are shown to be an effective system for sol-gel processing of Ta3N5. Ordered macroporous films of Ta3N5 on silica substrates have been prepared by infiltration of such a sol into close-packed sacrificial templates of cross-linked 500 nm polystyrene spheres followed by pyrolysis under ammonia to remove the template and crystallize the Ta3N5. Templates with long-range order were produced by controlled humidity evaporation. Pyrolysis of a sol-infiltrated template at 600 °C removes the polystyrene but does not crystallize Ta3N5, and X-ray diffraction shows nanocrystalline TaN plus amorphous material. Heating at 700 °C crystallizes Ta3N5 while retaining a high degree of pore ordering, whereas at 800 °C porous films with a complete loss of order are obtained.


Asunto(s)
Compuestos de Nitrógeno/química , Tantalio/química , Cristalización , Transición de Fase , Poliestirenos/química , Porosidad , Propilaminas/química , Dióxido de Silicio/química
8.
Adv Mater ; 34(9): e2107850, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34894160

RESUMEN

Formamidinium lead triiodide (FAPbI3 ) is attractive for photovoltaic devices due to its optimal bandgap at around 1.45 eV and improved thermal stability compared with methylammonium-based perovskites. Crystallization of phase-pure α-FAPbI3 conventionally requires high-temperature thermal annealing at 150 °C whilst the obtained α-FAPbI3 is metastable at room temperature. Here, aerosol-assisted crystallization (AAC) is reported, which converts yellow δ-FAPbI3 into black α-FAPbI3 at only 100 °C using precursor solutions containing only lead iodide and formamidinium iodide with no chemical additives. The obtained α-FAPbI3 exhibits remarkably enhanced stability compared to the 150 °C annealed counterparts, in combination with improvements in film crystallinity and photoluminescence yield. Using X-ray diffraction, X-ray scattering, and density functional theory simulation, it is identified that relaxation of residual tensile strains, achieved through the lower annealing temperature and post-crystallization crystal growth during AAC, is the key factor that facilitates the formation of phase-stable α-FAPbI3 . This overcomes the strain-induced lattice expansion that is known to cause the metastability of α-FAPbI3 . Accordingly, pure FAPbI3 p-i-n solar cells are reported, facilitated by the low-temperature (≤100 °C) AAC processing, which demonstrates increases of both power conversion efficiency and operational stability compared to devices fabricated using 150 °C annealed films.

9.
ACS Appl Mater Interfaces ; 13(46): 55380-55390, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34783246

RESUMEN

Light-emitting diodes using metal halide perovskite (PeLEDs) exhibit a strong potential for emerging display technologies due to their unique optoelectronic characteristics. However, for blue emission PeLEDs, there remains a huge challenge to achieve high performance, an issue that has been addressed in their red and green counterparts. The community is circumventing the challenges in synthesizing stable, high-quantum-efficiency, and low-defect-density blue emitters. Here, a facile strategy that replaces Pb by adding a monovalent ion Cu+, in this case into CsPbClBr2 perovskite, is carried out. This decreases the Pb dangling bonds and increases the radiative recombination for the enhancement of blue emission. The nanoparticles obtained by this method maintain a blue emission at 479 nm. The photoluminescence quantum yield is 2 times higher than the pristine analogue. The corresponding perovskite nanocrystal (PNC) LEDs achieve stable electroluminescence spectrum at high brightness. Simultaneously, the optimal blue PNC LEDs obtain the maximum values of luminance and external quantum efficiency of 1537 cd m-2 and 3.78%, respectively. And the device realizes typical blue light CIE chromaticity coordinates of (0.098, 0.123). Our work reveals that the substitution of Pb by heterovalent ions significantly decreases nanocrystal defects, which will pave the way of perovskite LEDs for practical applications in the future.

10.
ACS Appl Mater Interfaces ; 13(32): 38499-38507, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34365787

RESUMEN

Copper(I) thiocyanate (CuSCN) is a stable, low-cost, solution-processable p-type inorganic semiconductor used in numerous optoelectronic applications. Here, for the first time, we employ the time-of-flight (ToF) technique to measure the out-of-plane hole mobility of CuSCN films, enabled by the deposition of 4 µm-thick films using aerosol-assisted chemical vapor deposition (AACVD). A hole mobility of ∼10-3 cm2/V s was measured with a weak electric field dependence of 0.005 cm/V1/2. Additionally, by measuring several 1.5 µm CuSCN films, we show that the mobility is independent of thickness. To further validate the suitability of our AACVD-prepared 1.5 µm-thick CuSCN film in device applications, we demonstrate its incorporation as a hole transport layer (HTL) in methylammonium lead iodide (MAPbI3) perovskite solar cells (PSCs). Our AACVD films result in devices with measured power conversion efficiencies of 10.4%, which compares favorably with devices prepared using spin-coated CuSCN HTLs (12.6%), despite the AACVD HTLs being an order of magnitude thicker than their spin-coated analogues. Improved reproducibility and decreased hysteresis were observed, owing to a combination of excellent film quality, high charge-carrier mobility, and favorable interface energetics. In addition to providing a fundamental insight into charge-carrier mobility in CuSCN, our work highlights the AACVD methodology as a scalable, versatile tool suitable for film deposition for use in optoelectronic devices.

11.
ACS Appl Mater Interfaces ; 13(36): 43505-43515, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34472327

RESUMEN

Additive engineering is emerging as a powerful strategy to further enhance the performance of perovskite solar cells (PSCs), with the incorporation of bulky cations and amino acid (AA) derivatives being shown as a promising strategy for enhanced device stability. However, the incorporation of such additives typically results in photocurrent losses owing to their saturated carbon backbones, hindering charge transport and collection. Here, we investigate the use of AAs with varying carbon chain lengths as zwitterionic additives to enhance the PSC device stability, in air and nitrogen, under illumination. We, however, discovered that the device stability is insensitive to the chain length as the anticipated photocurrent drops as the chain length increases. Using glycine as an additive results in an improvement in the open circuit voltage from 1.10 to 1.14 V and a resulting power conversion efficiency of 20.2% (20.1% stabilized). Using time-of-flight secondary ion mass spectrometry, we confirm that the AAs reside at the surfaces and interfaces of our perovskite films and propose the mechanisms by which stability is enhanced. We highlight this with glycine as an additive, whereby an 8-fold increase in the device lifetime in ambient air at 1 sun illumination is recorded. Short-circuit photoluminescence quenching of complete devices is reported, which reveals that the loss in photocurrent density observed with longer carbon chain AAs results from the inefficient charge extraction from the perovskite absorber layer. These combined results demonstrate new fundamental understandings about the photophysical processes of additive engineering using AAs and provide a significant step forward in improving the stability of high-performance PSCs.

12.
RSC Adv ; 11(36): 22199-22205, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35480804

RESUMEN

Nickel oxide (NiO) has good optical transparency and wide band-gap, and due to the particular alignment of valence and conduction band energies with typical current collector materials has been used in solar cells as an efficient hole transport-electron blocking layer, where it is most commonly deposited via sol-gel or directly deposited as nanoparticles. An attractive alternative approach is via vapour deposition. This paper describes the chemical vapour deposition of p-type nickel oxide (NiO) thin films using the new nickel CVD precursor [Ni(dmamp')2], which unlike previous examples in literature is synthesised using the readily commercially available dialkylaminoalkoxide ligand dmamp' (2-dimethylamino-2-methyl-1-propanolate). The use of vapour deposited NiO as a blocking layer in a solar-cell device is presented, including benchmarking of performance and potential routes to improving performance to viable levels.

13.
ACS Appl Mater Interfaces ; 11(50): 47507-47515, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31752489

RESUMEN

Halide perovskites have emerged as promising candidates as the active material in photovoltaics and light-emitting diodes. They possess unusual bulk thermal transport properties that have been the focus of a number of studies, but there is much less understanding of thermal transport in thin films where a diverse range of structures and morphologies are accessible. Here, we report on the tuning of in-plane thermal conductivity in methylammonium lead iodide thin films by morphological control. Using 3-ω measurements, we find that the room temperature thermal conductivity of thermally evaporated methylammonium lead iodide perovskite films ranges from 0.31 to 0.59 W/(m K). We measure a discontinuity in thermal conductivity at the orthorhombic-tetragonal phase transition and explore this using density functional theory and attributing it to a collapse in the phonon group velocity along the c-axis of the tetragonal crystal. Moreover, we have quantified the thermal boundary resistance (Kapitza resistance) for thermally evaporated films, allowing us to estimate the Kapitza length, which is 36 ± 2 nm at room temperature and 15 ± 2 nm at 100 K. Curiously, the Kapitza resistance has a strong temperature dependence which we also explore using density functional theory, with these results suggesting an important role of methylammonium rotational modes in scattering phonons at the crystallite boundaries.

14.
ACS Appl Mater Interfaces ; 11(50): 46808-46817, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31738042

RESUMEN

Increasing the open-circuit voltage (Voc) is one of the key strategies for further improvement of the efficiency of perovskite solar cells. It requires fundamental understanding of the complex optoelectronic processes related to charge carrier generation, transport, extraction, and their loss mechanisms inside a device upon illumination. Herein, we report the important origin of Voc losses in methylammonium lead iodide perovskite (MAPI)-based solar cells, which results from undesirable positive charge (hole) accumulation at the interface between the perovskite photoactive layer and the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole-transport layer. We show strong correlation between the thickness-dependent surface photovoltage and device performance, unraveling that the interfacial charge accumulation leads to charge carrier recombination and results in a large decrease in Voc for the PEDOT:PSS/MAPI inverted devices (180 mV reduction in 50 nm thick device compared to 230 nm thick one). In contrast, accumulated positive charges at the TiO2/MAPI interface modify interfacial energy band bending, which leads to an increase in Voc for the TiO2/MAPI conventional devices (70 mV increase in 50 nm thick device compared to 230 nm thick one). Our results provide an important guideline for better control of interfaces in perovskite solar cells to improve device performance further.

15.
Sci Bull (Beijing) ; 63(6): 343-348, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36658870

RESUMEN

We investigate an electron transport bilayer fabricated at <110 °C to form all low-temperature processed, thermally stable, efficient perovskite solar cells with negligible hysteresis. The components of the bilayer create a symbiosis that results in improved devices compared with either of the components being used in isolation. A sol-gel derived ZnO layer facilitates improved energy level alignment and enhanced charge carrier extraction and a [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) layer to reduce hysteresis and enhance perovskite thermal stability. The creation of a bilayer structure allows materials that are inherently unsuitable to be in contact with the perovskite active layer to be used in efficient devices through simple surface modification strategies.

16.
Nat Commun ; 9(1): 3237, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-30104597

RESUMEN

Backbone functionalisation of conjugated polymers is crucial to their performance in many applications, from electronic displays to nanoparticle biosensors, yet there are limited approaches to introduce functionality. To address this challenge we have developed a method for the direct modification of the aromatic backbone of a conjugated polymer, post-polymerisation. This is achieved via a quantitative nucleophilic aromatic substitution (SNAr) reaction on a range of fluorinated electron-deficient comonomers. The method allows for facile tuning of the physical and optoelectronic properties within a batch of consistent molecular weight and dispersity. It also enables the introduction of multiple different functional groups onto the polymer backbone in a controlled manner. To demonstrate the versatility of this reaction, we designed and synthesised a range of emissive poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT)-based polymers for the creation of mono and multifunctional semiconducting polymer nanoparticles (SPNs) capable of two orthogonal bioconjugation reactions on the same surface.


Asunto(s)
Nanopartículas/química , Polimerizacion , Polímeros/química , Nanopartículas/ultraestructura , Semiconductores , Compuestos de Sulfhidrilo/química , Propiedades de Superficie
17.
Adv Sci (Weinh) ; 5(4): 1700980, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29721432

RESUMEN

Fullerenes and their derivatives are widely used as electron acceptors in bulk-heterojunction organic solar cells as they combine high electron mobility with good solubility and miscibility with relevant semiconducting polymers. However, studies on the use of fullerenes as the sole photogeneration and charge-carrier material are scarce. Here, a new type of solution-processed small-molecule solar cell based on the two most commonly used methanofullerenes, namely [6,6]-phenyl-C61-butyric acid methyl ester (PC60BM) and [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM), as the light absorbing materials, is reported. First, it is shown that both fullerene derivatives exhibit excellent ambipolar charge transport with balanced hole and electron mobilities. When the two derivatives are spin-coated over the wide bandgap p-type semiconductor copper (I) thiocyanate (CuSCN), cells with power conversion efficiency (PCE) of ≈1%, are obtained. Blending the CuSCN with PC70BM is shown to increase the performance further yielding cells with an open-circuit voltage of ≈0.93 V and a PCE of 5.4%. Microstructural analysis reveals that the key to this success is the spontaneous formation of a unique mesostructured p-n-like heterointerface between CuSCN and PC70BM. The findings pave the way to an exciting new class of single photoactive material based solar cells.

18.
Adv Mater ; 28(20): 3893-921, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26936217

RESUMEN

Zinc oxide (ZnO) is a widely utilized, versatile material implemented in a diverse range of technological applications, particularly in optoelectronic devices, where its inherent transparency, tunable electronic properties, and accessible nanostructures can be combined to confer superior device properties. ZnO is a complex material with a rich and intricate defect chemistry, and its properties can be extremely sensitive to processing methods and conditions; consequently, surface modification of ZnO using both inorganic and organic species has been explored to control and regulate its surface properties, particularly at heterointerfaces in electronic devices. Here, the properties of ZnO are described in detail, particularly its surface chemistry, along with the role of defects in governing its electronic properties, and methods employed to modulate the behavior of as-grown ZnO. An outline is also given on how the native and modified oxide interact with molecular materials. To illustrate the diverse range of surface modification methods and their subsequent influence on electronic properties, a comprehensive review of the modification of ZnO surfaces at molecular interfaces in hybrid photovoltaic (hPV) and organic photovoltaic (OPV) devices is presented. This is a case study rather than a progress report, aiming to highlight the progress made toward controlling and altering the surface properties of ZnO, and to bring attention to the ways in which this may be achieved by using various interfacial modifiers (IMs).

19.
Adv Mater ; 27(1): 93-100, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25382072

RESUMEN

Copper thiocyanate (CuSCN) is introduced as a hole-injection/hole-transport layer (HIL/HTL) for solution-processed organic light-emitting diodes (OLEDs). The OLED devices reported here with CuSCN as HIL/HTL perform significantly better than equivalent devices fabricated with a PEDOT:PSS HIL/HTL, and solution-processed, phosphorescent, small-molecule, green OLEDs with maximum luminance ≥10 000 cd m(-2) , maximum luminous efficiency ≤50 cd A(-1) , and maximum luminous power efficiency ≤55 lm W(-1) are demonstrated.

20.
ACS Appl Mater Interfaces ; 7(1): 782-90, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25490965

RESUMEN

The use of ultrasonic spray pyrolysis is demonstrated for the growth of polycrystalline, highly uniform indium oxide films at temperatures in the range of 200-300 °C in air using an aqueous In(NO3)3 precursor solution. Electrical characterization of as-deposited films by field-effect measurements reveals a strong dependence of the electron mobility on deposition temperature. Transistors fabricated at ∼250 °C exhibit optimum performance with maximum electron mobility values in the range of 15-20 cm(2) V (-1) s(-1) and current on/off ratio in excess of 10(6). Structural and compositional analysis of as-grown films by means of X-ray diffraction, diffuse scattering, and X-ray photoelectron spectroscopy reveal that layers deposited at 250 °C are denser and contain a reduced amount of hydroxyl groups as compared to films grown at either lower or higher temperatures. Microstructural analysis of semiconducting films deposited at 250 °C by high resolution cross-sectional transmission electron microscopy reveals that as-grown layers are extremely thin (∼7 nm) and composed of laterally large (30-60 nm) highly crystalline In2O3 domains. These unique characteristics of the In2O3 films are believed to be responsible for the high electron mobilities obtained from transistors fabricated at 250 °C. Our work demonstrates the ability to grow high quality low-dimensional In2O3 films and devices via ultrasonic spray pyrolysis over large area substrates while at the same time it provides guidelines for further material and device improvements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA