Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Neurosci ; 38(50): 10709-10724, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30396913

RESUMEN

To combat retinal degeneration, healthy fetal retinal sheets have been successfully transplanted into both rodent models and humans, with synaptic connectivity between transplant and degenerated host retina having been confirmed. In rodent studies, transplants have been shown to restore responses to flashes of light in a region of the superior colliculus corresponding to the location of the transplant in the host retina. To determine the quality and detail of visual information provided by the transplant, visual responsivity was studied here at the level of visual cortex where higher visual perception is processed. For our model, we used the transgenic Rho-S334ter line-3 rat (both sexes), which loses photoreceptors at an early age and is effectively blind at postnatal day 30. These rats received fetal retinal sheet transplants in one eye between 24 and 40 d of age. Three to 10 months following surgery, visually responsive neurons were found in regions of primary visual cortex matching the transplanted region of the retina that were as highly selective as normal rat to stimulus orientation, size, contrast, and spatial and temporal frequencies. Conversely, we found that selective response properties were largely absent in nontransplanted line-3 rats. Our data show that fetal retinal sheet transplants can result in remarkably normal visual function in visual cortex of rats with a degenerated host retina and represents a critical step toward developing an effective remedy for the visually impaired human population.SIGNIFICANCE STATEMENT Age-related macular degeneration and retinitis pigmentosa lead to profound vision loss in millions of people worldwide. Many patients lose both retinal pigment epithelium and photoreceptors. Hence, there is a great demand for the development of efficient techniques that allow for long-term vision restoration. In this study, we transplanted dissected fetal retinal sheets, which can differentiate into photoreceptors and integrate with the host retina of rats with severe retinal degeneration. Remarkably, we show that transplants generated visual responses in cortex similar in quality to normal rats. Furthermore, transplants preserved connectivity within visual cortex and the retinal relay from the lateral geniculate nucleus to visual cortex, supporting their potential application in curing vision loss associated with retinal degeneration.


Asunto(s)
Potenciales Evocados Visuales/fisiología , Retina/trasplante , Degeneración Retiniana/fisiopatología , Degeneración Retiniana/terapia , Índice de Severidad de la Enfermedad , Corteza Visual/fisiología , Animales , Femenino , Humanos , Masculino , Estimulación Luminosa/métodos , Ratas , Ratas Long-Evans , Ratas Transgénicas , Degeneración Retiniana/patología
2.
Exp Eye Res ; 174: 13-28, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29782826

RESUMEN

Loss of photoreceptors and other retinal cells is a common endpoint in retinal degenerate (RD) diseases that cause blindness. Retinal transplantation is a potential therapy to replace damaged retinal cells and improve vision. In this study, we examined the development of human fetal retinal sheets with or without their retinal pigment epithelium (RPE) transplanted to immunodeficient retinal degenerate rho S334ter-3 rats. Sheets were dissected from fetal human eyes (11-15.7 weeks gestation) and then transplanted to the subretinal space of 24-31 d old RD nude rats. Every month post surgery, eyes were imaged by high-resolution spectral-domain optical coherence tomography (SD-OCT). SD-OCT showed that transplants were placed into the subretinal space and developed laminated areas or rosettes, with clear development of plexiform layers first seen in OCT at 3 months post surgery. Several months later, as could be expected by the much slower development of human cells compared to rat cells, transplant photoreceptors developed inner and later outer segments. Retinal sections were analyzed by immunohistochemistry for human and retinal markers and confirmed the formation of several retinal subtypes within the retinal layers. Transplant cells extended processes and a lot of the cells could also be seen migrating into the host retina. At 5.8-8.6 months post surgery, selected rats were exposed to light flashes and recorded for visual responses in superior colliculus, (visual center in midbrain). Four of seven rats with transplants showed responses to flashes of light in a limited area of superior colliculus. No response with the same dim light intensity was found in age-matched RD controls (non-surgery or sham surgery). In summary, our data showed that human fetal retinal sheets transplanted to the severely disturbed subretinal space of RD nude rats develop mature photoreceptors and other retinal cells, integrate with the host and induce vision improvement.


Asunto(s)
Retina , Degeneración Retiniana/cirugía , Trasplante de Células Madre/métodos , Animales , Biomarcadores/metabolismo , Humanos , Microglía/metabolismo , Neuroglía/metabolismo , Células Fotorreceptoras/patología , Ratas , Retina/citología , Retina/embriología , Retina/metabolismo , Degeneración Retiniana/fisiopatología , Colículos Superiores/fisiología , Tomografía de Coherencia Óptica , Visión Ocular/fisiología
3.
Cell Immunol ; 281(2): 150-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23648820

RESUMEN

Semaphorins are important regulators of peripheral T and B-cell mediated immune responses in mice and humans. Modulatory roles of semaphorins in T cell development are also being characterized. We carefully analyzed the gene expression and protein levels of semaphorins 4A, 4D, and 7A at various developmental stages of T cell maturation in the thymus of C57BL/6 mice. Sema7a was expressed at very low levels, while Sema4d was abundant at all developmental stages of mouse thymocytes. We found the most interesting pattern of gene regulation and protein localization for semaphorin 4A. Both semaphorin 4A mRNA and protein were clearly detected on the earliest progenitors and were downregulated through thymic development. SEMA4A protein also showed a distinct cortico-medullary pattern of localization. Our findings contribute to an understanding of the complex roles played by semaphorins in the network of spatially and temporally regulated cues underpinning T cell development in the thymus.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Semaforinas/genética , Timocitos/metabolismo , Timo/metabolismo , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Células Precursoras de Linfocitos T/citología , Células Precursoras de Linfocitos T/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semaforinas/metabolismo , Timocitos/citología , Timo/citología , Timo/crecimiento & desarrollo , Factores de Tiempo
4.
PLoS Pathog ; 6(1): e1000739, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-20126443

RESUMEN

African trypanosomes are devastating human and animal pathogens that cause significant human mortality and limit economic development in sub-Saharan Africa. Studies of trypanosome biology generally consider these protozoan parasites as individual cells in suspension cultures or in animal models of infection. Here we report that the procyclic form of the African trypanosome Trypanosoma brucei engages in social behavior when cultivated on semisolid agarose surfaces. This behavior is characterized by trypanosomes assembling into multicellular communities that engage in polarized migrations across the agarose surface and cooperate to divert their movements in response to external signals. These cooperative movements are flagellum-mediated, since they do not occur in trypanin knockdown parasites that lack normal flagellum motility. We term this behavior social motility based on features shared with social motility and other types of surface-induced social behavior in bacteria. Social motility represents a novel and unexpected aspect of trypanosome biology and offers new paradigms for considering host-parasite interactions.


Asunto(s)
Trypanosoma/fisiología , Western Blotting
5.
Front Neurosci ; 15: 752958, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34764853

RESUMEN

End-stage age-related macular degeneration (AMD) and retinitis pigmentosa (RP) are two major retinal degenerative (RD) conditions that result in irreversible vision loss. Permanent eye damage can also occur in battlefields or due to accidents. This suggests there is an unmet need for developing effective strategies for treating permanent retinal damages. In previous studies, co-grafted sheets of fetal retina with its retinal pigment epithelium (RPE) have demonstrated vision improvement in rat retinal disease models and in patients, but this has not yet been attempted with stem-cell derived tissue. Here we demonstrate a cellular therapy for irreversible retinal eye injuries using a "total retina patch" consisting of retinal photoreceptor progenitor sheets and healthy RPE cells on an artificial Bruch's membrane (BM). For this, retina organoids (ROs) (cultured in suspension) and polarized RPE sheets (cultured on an ultrathin parylene substrate) were made into a co-graft using bio-adhesives [gelatin, growth factor-reduced matrigel, and medium viscosity (MVG) alginate]. In vivo transplantation experiments were conducted in immunodeficient Royal College of Surgeons (RCS) rats at advanced stages of retinal degeneration. Structural reconstruction of the severely damaged retina was observed based on histological assessments and optical coherence tomography (OCT) imaging. Visual functional assessments were conducted by optokinetic behavioral testing and superior colliculus electrophysiology. Long-term survival of the co-graft in the rat subretinal space and improvement in visual function were observed. Immunohistochemistry showed that co-grafts grew, generated new photoreceptors and developed neuronal processes that were integrated into the host retina. This novel approach can be considered as a new therapy for complete replacement of a degenerated retina.

6.
Lab Chip ; 21(17): 3361-3377, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34236056

RESUMEN

Retinal degeneration is a leading cause of vision impairment and blindness worldwide and medical care for advanced disease does not exist. Stem cell-derived retinal organoids (RtOgs) became an emerging tool for tissue replacement therapy. However, existing RtOg production methods are highly heterogeneous. Controlled and predictable methodology and tools are needed to standardize RtOg production and maintenance. In this study, we designed a shear stress-free micro-millifluidic bioreactor for nearly labor-free retinal organoid maintenance. We used a stereolithography (SLA) 3D printer to fabricate a mold from which Polydimethylsiloxane (PDMS) was cast. We optimized the chip design using in silico simulations and in vitro evaluation to optimize mass transfer efficiency and concentration uniformity in each culture chamber. We successfully cultured RtOgs at three different differentiation stages (day 41, 88, and 128) on an optimized bioreactor chip for more than 1 month. We used different quantitative and qualitative techniques to fully characterize the RtOgs produced by static dish culture and bioreactor culture methods. By analyzing the results from phase contrast microscopy, single-cell RNA sequencing (scRNA seq), quantitative polymerase chain reaction (qPCR), immunohistology, and electron microscopy, we found that bioreactor-cultured RtOgs developed cell types and morphology comparable to static cultured ones and exhibited similar retinal genes expression levels. We also evaluated the metabolic activity of RtOgs in both groups using fluorescence lifetime imaging (FLIM), and found that the outer surface region of bioreactor cultured RtOgs had a comparable free/bound NADH ratio and overall lower long lifetime species (LLS) ratio than static cultured RtOgs during imaging. To summarize, we validated an automated micro-millifluidic device with significantly reduced shear stress to produce RtOgs of comparable quality to those maintained in conventional static culture.


Asunto(s)
Dispositivos Laboratorio en un Chip , Organoides , Reactores Biológicos , Diferenciación Celular , Retina
7.
Front Cell Neurosci ; 15: 796903, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34955757

RESUMEN

Pluripotent stem cell-derived organoid technologies have opened avenues to preclinical basic science research, drug discovery, and transplantation therapy in organ systems. Stem cell-derived organoids follow a time course similar to species-specific organ gestation in vivo. However, heterogeneous tissue yields, and subjective tissue selection reduce the repeatability of organoid-based scientific experiments and clinical studies. To improve the quality control of organoids, we introduced a live imaging technique based on two-photon microscopy to non-invasively monitor and characterize retinal organoids' (RtOgs') long-term development. Fluorescence lifetime imaging microscopy (FLIM) was used to monitor the metabolic trajectory, and hyperspectral imaging was applied to characterize structural and molecular changes. We further validated the live imaging experimental results with endpoint biological tests, including quantitative polymerase chain reaction (qPCR), single-cell RNA sequencing, and immunohistochemistry. With FLIM results, we analyzed the free/bound nicotinamide adenine dinucleotide (f/b NADH) ratio of the imaged regions and found that there was a metabolic shift from glycolysis to oxidative phosphorylation. This shift occurred between the second and third months of differentiation. The total metabolic activity shifted slightly back toward glycolysis between the third and fourth months and stayed relatively stable between the fourth and sixth months. Consistency in organoid development among cell lines and production lots was examined. Molecular analysis showed that retinal progenitor genes were expressed in all groups between days 51 and 159. Photoreceptor gene expression emerged around the second month of differentiation, which corresponded to the shift in the f/b NADH ratio. RtOgs between 3 and 6 months of differentiation exhibited photoreceptor gene expression levels that were between the native human fetal and adult retina gene expression levels. The occurrence of cone opsin expression (OPN1 SW and OPN1 LW) indicated the maturation of photoreceptors in the fourth month of differentiation, which was consistent with the stabilized level of f/b NADH ratio starting from 4 months. Endpoint single-cell RNA and immunohistology data showed that the cellular compositions and lamination of RtOgs at different developmental stages followed those in vivo.

8.
Invest Ophthalmol Vis Sci ; 61(11): 34, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32945842

RESUMEN

Purpose: To study if human embryonic stem cell-derived photoreceptors could survive and function without the support of retinal pigment epithelium (RPE) after transplantation into Royal College of Surgeons rats, a rat model of retinal degeneration caused by RPE dysfunction. Methods: CSC14 human embryonic stem cells were differentiated into primordial eye structures called retinal organoids. Retinal organoids were analyzed by quantitative PCR and immunofluorescence and compared with human fetal retina. Retinal organoid sheets (30-70 day of differentiation) were transplanted into immunodeficient RCS rats, aged 44 to 56 days. The development of transplant organoids in vivo in relation to the host was examined by optical coherence tomography. Visual function was assessed by optokinetic testing, electroretinogram, and superior colliculus electrophysiologic recording. Cryostat sections were analyzed for various retinal, synaptic, and donor markers. Results: Retinal organoids showed similar gene expression to human fetal retina transplanted rats demonstrated significant improvement in visual function compared with RCS nonsurgery and sham surgery controls by ERGs at 2 months after surgery (but not later), optokinetic testing (up to 6 months after surgery) and electrophysiologic superior colliculus recordings (6-8 months after surgery). The transplanted organoids survived more than 7 months; developed photoreceptors with inner and outer segments, and other retinal cells; and were well-integrated within the host. Conclusions: This study, to our knowledge, is the first to show that transplanted photoreceptors survive and function even with host's dysfunctional RPE. Our findings suggest that transplantation of organoid sheets from stem cells may be a promising approach/therapeutic for blinding diseases.


Asunto(s)
Células Fotorreceptoras/metabolismo , Degeneración Retiniana/metabolismo , Epitelio Pigmentado de la Retina/fisiopatología , Animales , Modelos Animales de Enfermedad , Humanos , Organoides/metabolismo , Organoides/trasplante , Células Fotorreceptoras/patología , Ratas , Ratas Mutantes , Degeneración Retiniana/patología , Degeneración Retiniana/fisiopatología , Epitelio Pigmentado de la Retina/patología , Tomografía de Coherencia Óptica
9.
Oncotarget ; 10(51): 5359-5371, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31523394

RESUMEN

Because of its role as an immune checkpoint, levels of soluble programmed cell death protein-1 (sPD-1) could be useful as a prognostic biomarker or predictive biomarker in cancer patients treated with vaccines. Very low levels of sPD-1 may indicate lack of an existing anti-cancer immune response; very high levels may indicate an active immune response that is suppressed. In between these extremes, a decrease in PD-1 following injections of an anti-cancer vaccine may indicate an enhanced immune response that has not been suppressed. Blood samples obtained during a randomized trial in patients with metastatic melanoma were tested from 22 patients treated with a tumor cell vaccine (TCV) and 17 treated with a dendritic cell vaccine (DCV). Survival was better in DCV-treated patients. sPD-1 was measured at week-0, one week before the first of three weekly subcutaneous injections, and at week-4, one week after the third injection. The combination of a very low baseline sPD-1, or absence of a very high PD-1 at baseline followed by a decline in sPD-1 at week-4, was predictive of surviving three or more years in DCV-treated patients, but not TCV-treated. Among DCV-treated patients, these sPD-1 criteria appropriately classified 8/10 (80%) of 3-year survivors, and 6/7 (86%) of patients who did not survive three years. These preliminary observations suggest that sPD-1 might be a useful biomarker for melanoma patients being considered for treatment with this DCV vaccine, and/or to predict efficacy after only three injections, but this would have to be confirmed in larger studies.

10.
Invest Ophthalmol Vis Sci ; 59(6): 2586-2603, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29847666

RESUMEN

Purpose: To investigate whether sheets of retina organoids derived from human embryonic stem cells (hESCs) can differentiate, integrate, and improve visual function in an immunodeficient rat model of severe retinal degeneration (RD). Methods: 3D hESC-derived retina organoids were analyzed by quantitative PCR and immunofluorescence. Sheets dissected from retina organoids (30-65 days of differentiation) were transplanted into the subretinal space of immunodeficient rho S334ter-3 rats. Visual function was tested by optokinetic testing and electrophysiologic recording in the superior colliculus. Transplants were analyzed at 54 to 300 days postsurgery by immunohistochemistry for donor and retinal markers. Results: Retina organoids contained multiple retinal cell types, including progenitor populations capable of developing new cones and rods. After transplantation into an immunodeficient rat model of severe RD, the transplanted sheets differentiated, integrated, and produced functional photoreceptors and other retinal cells, according to the longer human developmental timetable. Maturation of the transplanted retinal cells created visual improvements that were measured by optokinetic testing and electrophysiologic recording in the superior colliculus. Immunohistochemistry analysis indicated that the donor cells were synaptically active. Extensive transplant projections could be seen within the host RD retina. Optical coherence tomography imaging monitored long-term transplant growth and survival up to 10 months postsurgery. Conclusions: These data demonstrate that the transplantation of sheets dissected from hESC-derived retina organoids is a potential therapeutic method for restoring vision in advanced stages of RD.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias Humanas/citología , Organoides/citología , Retina/citología , Degeneración Retiniana/terapia , Trasplante de Células Madre , Agudeza Visual/fisiología , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Electrofisiología , Humanos , Microscopía Fluorescente , Nistagmo Optoquinético/fisiología , Organoides/metabolismo , Ratas , Ratas Desnudas , Reacción en Cadena en Tiempo Real de la Polimerasa , Retina/metabolismo , Degeneración Retiniana/diagnóstico por imagen , Degeneración Retiniana/fisiopatología , Tomografía de Coherencia Óptica
11.
Invest Ophthalmol Vis Sci ; 58(1): 614-630, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28129425

RESUMEN

Purpose: To characterize a recently developed model, the retinal degenerate immunodeficient S334ter line-3 rat (SD-Foxn1 Tg(S334ter)3Lav) (RD nude rat), and to test whether transplanted rat fetal retinal sheets can elicit lost responses to light. Methods: National Institutes of Health nude rats (SD-Foxn1 Tg) with normal retina were compared to RD nude rats with and without transplant for morphology and visual function. Retinal sheets from transgenic rats expressing human placental alkaline phosphatase (hPAP) were transplanted into the subretinal space of RD nude rats between postnatal day (P) 26 and P38. Transplant morphology was examined in vivo using optical coherence tomography (OCT). Visual function was assessed by optokinetic (OKN) testing, electroretinogram (ERG), and superior colliculus (SC) electrophysiology. Cryostat sections were analyzed for various retinal/synaptic markers and for the expression of donor hPAP. Results: Optical coherence tomography scans showed the placement and laminar development of retinal sheet transplants in the subretinal space. Optokinetic testing demonstrated a deficit in visual acuity in RD nude rats that was improved after retinal sheet transplantation. No ERG responses were detected in the RD nude rats with or without transplantation. Superior colliculus responses were absent in age-matched control and sham surgery RD nude rats; however, robust light-evoked responses were observed in a specific location in the SC of transplanted RD nude rats. Responsive regions corresponded to the area of transplant placement in the eye. The quality of visual responses correlated with transplant organization and placement. Conclusions: The data suggest that retinal sheet transplants integrate into the host retina of RD nude rats and recover significant visual function.


Asunto(s)
Trasplante de Tejido Fetal/métodos , Recuperación de la Función , Retina/trasplante , Degeneración Retiniana/cirugía , Agudeza Visual , Animales , Modelos Animales de Enfermedad , Electrofisiología , Electrorretinografía , Femenino , Inmunohistoquímica , Masculino , Ratas , Ratas Long-Evans , Ratas Desnudas , Retina/embriología , Retina/fisiopatología , Degeneración Retiniana/patología , Degeneración Retiniana/fisiopatología , Donantes de Tejidos , Tomografía de Coherencia Óptica
12.
J Immunol Res ; 2016: 2414906, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27872864

RESUMEN

Understanding how embryonic stem cells and their derivatives interact with the adult host immune system is critical to developing their therapeutic potential. Murine embryonic stem cell-derived hematopoietic progenitors (ESHPs) were generated via coculture with the bone marrow stromal cell line, OP9, and then transplanted into NOD.SCID.Common Gamma Chain (NSG) knockout mice, which lack B, T, and natural killer cells. Compared to control mice transplanted with adult lineage-negative bone marrow (Lin- BM) progenitors, ESHP-transplanted mice attained a low but significant level of donor hematopoietic chimerism. Based on our previous studies, we hypothesized that macrophages might contribute to the low engraftment of ESHPs in vivo. Enlarged spleens were observed in ESHP-transplanted mice and found to contain higher numbers of host F4/80+ macrophages compared to BM-transplanted controls. In vivo depletion of host macrophages using clodronate-loaded liposomes improved the ESHP-derived hematopoietic chimerism in the spleen but not in the BM. F4/80+ macrophages demonstrated a striking propensity to phagocytose ESHP targets in vitro. Taken together, these results suggest that macrophages are a barrier to both syngeneic and allogeneic ESHP engraftment in vivo.


Asunto(s)
Células Madre Embrionarias/citología , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Antígenos de Superficie/metabolismo , Supervivencia de Injerto/inmunología , Inmunofenotipificación , Ratones , Fagocitosis/inmunología , Quimera por Trasplante , Inmunología del Trasplante
13.
Exp Hematol ; 42(5): 347-359.e5, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24440521

RESUMEN

The clinical use of embryonic stem cell (ESC)-derived hematopoietic progenitors (ESHPs) requires the generation of ESHPs that produce mature hematopoietic cells and do not induce immune rejection after transplantation. We compared the developmental maturity and immunogenicity of ESHPs generated using two methods: embryoid body (EB) formation and culture of ESCs with the OP9 bone marrow stromal cell line (ESC-OP9). ESHPs derived from EBs displayed an immature hematopoietic phenotype and were devoid of immunogenicity marker expression. In contrast, ESHPs derived via ESC-OP9 displayed a mature phenotype and expressed high levels of some immunostimulatory molecules. ESHPs alone could not stimulate CD4(+) T lymphocyte proliferation directly. However, preferential phagocytosis of ESHPs and T cell proliferation were observed in the presence of antigen-presenting cells, consistent with a model of indirect immune recognition of ESHPs. These results suggest that depletion of host CD4(+) T lymphocytes or antigen-presenting cells may be necessary for successful ESHP transplantation.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Proliferación Celular , Células Madre Embrionarias/inmunología , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/inmunología , Animales , Células Presentadoras de Antígenos/citología , Línea Celular , Células Madre Embrionarias/citología , Células Madre Hematopoyéticas/citología , Ratones , Ratones Endogámicos BALB C
14.
J Immunol Methods ; 367(1-2): 85-94, 2011 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-21354161

RESUMEN

The epithelial cells (TECs) are microenvironmental niche cells which support T lymphocyte development in the thymus. Most studies of TEC biology have focused on TEC at the fetal stage of development, whereas the biology of adult-stage TECs is not as well-understood. Delineating the molecular mechanisms that control adult TEC differentiation has implications for the success of T-lymphocyte based therapies for autoimmune diseases and induction of immunological tolerance to stem cell-derived tissues. Detailed analysis of adult TECs is technically challenging due to their rarity, their diminishing numbers with age, and the limited number of markers to distinguish between unique TEC subpopulations. Here, we have devised an improved isolation protocol for adult mouse TECs and combined it with six-color multiparameter flow cytometry. Using these techniques, we have identified four distinct subsets of CD45- EpCAM+ TECs in adult mice: a) UEA1(low) CDR1(low) (UC(low)); b) UEA1(high) CDR1(high)(UC(high)); c) UEA1(low) CDR1(high) MHC(high) (cTEC); and d) UEA1(high)CDR1(low) MHC(int/high) (mTEC). PCR analysis verified that these TEC subsets differentially expressed known TEC genes. TEC subsets were further analyzed using high-throughput quantitative PCR arrays to reveal novel genes that could be important for TEC subset maintenance. Intracellular staining for keratin-5 and keratin-8 can also be added, but our results suggest that keratin expression alone cannot be used to distinguish adult TEC subsets. Our enhanced isolation allows for detailed analysis of rare TEC subpopulations in the adult mouse at the cellular and molecular levels.


Asunto(s)
Separación Celular/métodos , Citometría de Flujo/métodos , Expresión Génica , Timo/citología , Animales , Células Epiteliales/citología , Células Epiteliales/metabolismo , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
PLoS One ; 5(10): e13528, 2010 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-20976004

RESUMEN

BACKGROUND: Cellular interactions between thymocytes and thymic stromal cells are critical for normal T cell development. Thymic epithelial cells (TECs) are important stromal niche cells that provide essential growth factors, cytokines, and present self-antigens to developing thymocytes. The identification of genes that mediate cellular crosstalk in the thymus is ongoing. One candidate gene, Adam17, encodes a metalloprotease that functions by cleaving the ectodomain of several transmembrane proteins and regulates various developmental processes. In conventional Adam17 knockout mice, a non-cell autonomous role for ADAM17 in adult T cell development was reported, which strongly suggested that expression of ADAM17 in TECs was required for normal T cell development. However, knockdown of Adam17 results in multisystem developmental defects and perinatal lethality, which has made study of the role of Adam17 in specific cell types difficult. Here, we examined T cell and thymic epithelial cell development using a conditional knockout approach. METHODOLOGY/PRINCIPAL FINDINGS: We generated an Adam17 conditional knockout mouse in which floxed Adam17 is deleted specifically in TECs by Cre recombinase under the control of the Foxn1 promoter. Normal T cell lineage choice and development through the canonical αß T cell stages was observed. Interestingly, Adam17 deficiency in TECs resulted in reduced expression of the transcription factor Aire. However, no alterations in the patterns of TEC phenotypic marker expression and thymus morphology were noted. CONCLUSIONS/SIGNIFICANCE: In contrast to expectation, our data clearly shows that absence of Adam17 in TECs is dispensable for normal T cell development. Differentiation of TECs is also unaffected by loss of Adam17 based on phenotypic markers. Surprisingly, we have uncovered a novel genetic link between Adam17and Aire expression in vivo. The cell type in which ADAM17 mediates its non-cell autonomous impact and the mechanisms by which it regulates intrathymic T cell development remain to be identified.


Asunto(s)
Proteínas ADAM/fisiología , Linfocitos T/citología , Timo/metabolismo , Proteínas ADAM/genética , Proteína ADAM17 , Animales , Células Epiteliales/citología , Células Epiteliales/metabolismo , Ratones , Ratones Noqueados , Timo/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA