Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 55(40): 12372-5, 2016 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-27601357

RESUMEN

Laboratory in vitro evolution (LIVE) might deliver DNA aptamers that bind proteins expressed on the surface of cells. In this work, we used cell engineering to place glypican 3 (GPC3), a possible marker for liver cancer theranostics, on the surface of a liver cell line. Libraries were then built from a six-letter genetic alphabet containing the standard nucleobases and two added nucleobases (2-amino-8H-imidazo[1,2-a][1,3,5]triazin-4-one and 6-amino-5-nitropyridin-2-one), Watson-Crick complements from an artificially expanded genetic information system (AEGIS). With counterselection against non-engineered cells, eight AEGIS-containing aptamers were recovered. Five bound selectively to GPC3-overexpressing cells. This selection-counterselection scheme had acceptable statistics, notwithstanding the possibility that cells engineered to overexpress GPC3 might also express different off-target proteins. This is the first example of such a combination.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Glipicanos/metabolismo , Animales , Aptámeros de Nucleótidos/química , Secuencia de Bases , Ingeniería Celular , Línea Celular , Técnicas de Laboratorio Clínico , Citometría de Flujo , Glipicanos/química , Glipicanos/genética , Humanos , Ratones , Unión Proteica
2.
J Am Chem Soc ; 137(21): 6734-7, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-25966323

RESUMEN

Axiomatically, the density of information stored in DNA, with just four nucleotides (GACT), is higher than in a binary code, but less than it might be if synthetic biologists succeed in adding independently replicating nucleotides to genetic systems. Such addition could also add functional groups not found in natural DNA, but useful for molecular performance. Here, we consider two new nucleotides (Z and P, 6-amino-5-nitro-3-(1'-ß-D-2'-deoxyribo-furanosyl)-2(1H)-pyridone and 2-amino-8-(1'-ß-D-2'-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one). These are designed to pair via complete Watson-Crick geometry. These were added to a library of oligonucleotides used in a laboratory in vitro evolution (LIVE) experiment; the GACTZP library was challenged to deliver molecules that bind selectively to liver cancer cells, but not to untransformed liver cells. Unlike in classical in vitro selection, low levels of mutation allow this system to evolve to create binding molecules not necessarily present in the original library. Over a dozen binding species were recovered. The best had Z and/or P in their sequences. Several had multiple, nearby, and adjacent Zs and Ps. Only the weaker binders contained no Z or P at all. This suggests that this system explored much of the sequence space available to this genetic system and that GACTZP libraries are richer reservoirs of functionality than standard libraries.


Asunto(s)
ADN/química , ADN/síntesis química , ADN/genética , Biblioteca de Genes , Células Hep G2 , Humanos , Modelos Moleculares , Reacción en Cadena de la Polimerasa
3.
Astrobiology ; 15(3): 200-6, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25761113

RESUMEN

Ethers are proposed here as the repeating backbone linking units in linear genetic biopolymers that might support Darwinian evolution in hydrocarbon oceans. Hydrocarbon oceans are found in our own solar system as methane mixtures on Titan. They may be found as mixtures of higher alkanes (propane, for example) on warmer hydrocarbon-rich planets in exosolar systems ("warm Titans"). We report studies on the solubility of several short polyethers in propane over its liquid range (from 85 to 231 K, or -188 °C to -42 °C). These show that polyethers are reasonably soluble in propane at temperatures down to ca. 200 K. However, their solubilities drop dramatically at still lower temperatures and become immeasurably low below 170 K, still well above the ∼ 95 K in Titan's oceans. Assuming that a liquid phase is essential for any living system, and genetic biopolymers must dissolve in that biosolvent to support Darwinism, these data suggest that we must look elsewhere to identify linear biopolymers that might support genetics in Titan's surface oceans. However, genetic molecules with polyether backbones may be suitable to support life in hydrocarbon oceans on warm Titans, where abundant organics and environments lacking corrosive water might make it easier for life to originate.


Asunto(s)
Frío , Éteres/química , Medio Ambiente Extraterrestre/química , Hidrocarburos/química , Modelos Teóricos , Evolución Biológica , Biopolímeros/química , Estructuras Genéticas , Saturno , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA