Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(30): e2321972121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39008677

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection inhibits mitochondrial oxidative phosphorylation (OXPHOS) and elevates mitochondrial reactive oxygen species (ROS, mROS) which activates hypoxia-inducible factor-1alpha (HIF-1α), shifting metabolism toward glycolysis to drive viral biogenesis but also causing the release of mitochondrial DNA (mtDNA) and activation of innate immunity. To determine whether mitochondrially targeted antioxidants could mitigate these viral effects, we challenged mice expressing human angiotensin-converting enzyme 2 (ACE2) with SARS-CoV-2 and intervened using transgenic and pharmacological mitochondrially targeted catalytic antioxidants. Transgenic expression of mitochondrially targeted catalase (mCAT) or systemic treatment with EUK8 decreased weight loss, clinical severity, and circulating levels of mtDNA; as well as reduced lung levels of HIF-1α, viral proteins, and inflammatory cytokines. RNA-sequencing of infected lungs revealed that mCAT and Eukarion 8 (EUK8) up-regulated OXPHOS gene expression and down-regulated HIF-1α and its target genes as well as innate immune gene expression. These data demonstrate that SARS-CoV-2 pathology can be mitigated by catalytically reducing mROS, potentially providing a unique host-directed pharmacological therapy for COVID-19 which is not subject to viral mutational resistance.


Asunto(s)
Antioxidantes , COVID-19 , Ratones Transgénicos , Mitocondrias , Fosforilación Oxidativa , SARS-CoV-2 , Animales , Ratones , COVID-19/virología , COVID-19/metabolismo , COVID-19/inmunología , COVID-19/patología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Pulmón/virología , Pulmón/patología , Pulmón/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Catalasa/metabolismo , Catalasa/genética , Tratamiento Farmacológico de COVID-19 , Modelos Animales de Enfermedad , Inmunidad Innata
2.
Nature ; 575(7782): 375-379, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31618756

RESUMEN

Mitochondrial homeostasis depends on mitophagy, the programmed degradation of mitochondria. Only a few proteins are known to participate in mitophagy. Here we develop a multidimensional CRISPR-Cas9 genetic screen, using multiple mitophagy reporter systems and pro-mitophagy triggers, and identify numerous components of parkin-dependent mitophagy1. Unexpectedly, we find that the adenine nucleotide translocator (ANT) complex is required for mitophagy in several cell types. Whereas pharmacological inhibition of ANT-mediated ADP/ATP exchange promotes mitophagy, genetic ablation of ANT paradoxically suppresses mitophagy. Notably, ANT promotes mitophagy independently of its nucleotide translocase catalytic activity. Instead, the ANT complex is required for inhibition of the presequence translocase TIM23, which leads to stabilization of PINK1, in response to bioenergetic collapse. ANT modulates TIM23 indirectly via interaction with TIM44, which regulates peptide import through TIM232. Mice that lack ANT1 show blunted mitophagy and consequent profound accumulation of aberrant mitochondria. Disease-causing human mutations in ANT1 abrogate binding to TIM44 and TIM23 and inhibit mitophagy. Together, our findings show that ANT is an essential and fundamental mediator of mitophagy in health and disease.


Asunto(s)
Mitofagia , Animales , Línea Celular , Ratones , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Nucleótidos/metabolismo , Unión Proteica , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33536343

RESUMEN

Autism spectrum disorders (ASDs) are characterized by a deficit in social communication, pathologic repetitive behaviors, restricted interests, and electroencephalogram (EEG) aberrations. While exhaustive analysis of nuclear DNA (nDNA) variation has revealed hundreds of copy number variants (CNVs) and loss-of-function (LOF) mutations, no unifying hypothesis as to the pathophysiology of ASD has yet emerged. Based on biochemical and physiological analyses, it has been hypothesized that ASD may be the result of a systemic mitochondrial deficiency with brain-specific manifestations. This proposal has been supported by recent mitochondrial DNA (mtDNA) analyses identifying both germline and somatic mtDNA variants in ASD. If mitochondrial defects do predispose to ASD, then mice with certain mtDNA mutations should present with autism endophenotypes. To test this prediction, we examined a mouse strain harboring an mtDNA ND6 gene missense mutation (P25L). This mouse manifests impaired social interactions, increased repetitive behaviors and anxiety, EEG alterations, and a decreased seizure threshold, in the absence of reduced hippocampal interneuron numbers. EEG aberrations were most pronounced in the cortex followed by the hippocampus. Aberrations in mitochondrial respiratory function and reactive oxygen species (ROS) levels were also most pronounced in the cortex followed by the hippocampus, but absent in the olfactory bulb. These data demonstrate that mild systemic mitochondrial defects can result in ASD without apparent neuroanatomical defects and that systemic mitochondrial mutations can cause tissue-specific brain defects accompanied by regional neurophysiological alterations.


Asunto(s)
Trastorno Autístico/genética , Encéfalo/metabolismo , ADN Mitocondrial/genética , Mitocondrias/genética , Animales , Trastorno Autístico/diagnóstico por imagen , Trastorno Autístico/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Variaciones en el Número de Copia de ADN/genética , Modelos Animales de Enfermedad , Electroencefalografía , Endofenotipos , Hipocampo/diagnóstico por imagen , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Mitocondrias/patología , Mutación/genética , Especies Reactivas de Oxígeno/metabolismo
4.
Int J Mol Sci ; 25(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38732162

RESUMEN

The synucleinopathies are a diverse group of neurodegenerative disorders characterized by the accumulation of aggregated alpha-synuclein (aSyn) in vulnerable populations of brain cells. Oxidative stress is both a cause and a consequence of aSyn aggregation in the synucleinopathies; however, noninvasive methods for detecting oxidative stress in living animals have proven elusive. In this study, we used the reactive oxygen species (ROS)-sensitive positron emission tomography (PET) radiotracer [18F]ROStrace to detect increases in oxidative stress in the widely-used A53T mouse model of synucleinopathy. A53T-specific elevations in [18F]ROStrace signal emerged at a relatively early age (6-8 months) and became more widespread within the brain over time, a pattern which paralleled the progressive development of aSyn pathology and oxidative damage in A53T brain tissue. Systemic administration of lipopolysaccharide (LPS) also caused rapid and long-lasting elevations in [18F]ROStrace signal in A53T mice, suggesting that chronic, aSyn-associated oxidative stress may render these animals more vulnerable to further inflammatory insult. Collectively, these results provide novel evidence that oxidative stress is an early and chronic process during the development of synucleinopathy and suggest that PET imaging with [18F]ROStrace holds promise as a means of detecting aSyn-associated oxidative stress noninvasively.


Asunto(s)
Encéfalo , Modelos Animales de Enfermedad , Estrés Oxidativo , Tomografía de Emisión de Positrones , Sinucleinopatías , alfa-Sinucleína , Animales , Sinucleinopatías/diagnóstico por imagen , Sinucleinopatías/metabolismo , Sinucleinopatías/patología , Tomografía de Emisión de Positrones/métodos , Ratones , alfa-Sinucleína/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Radioisótopos de Flúor , Masculino , Ratones Transgénicos , Radiofármacos , Especies Reactivas de Oxígeno/metabolismo
5.
Mol Cell Biochem ; 478(6): 1231-1244, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36282352

RESUMEN

Sodium fluoroacetate (FA) is a metabolic poison that systemically inhibits the tricarboxylic acid (TCA) cycle, causing energy deficiency and ultimately multi-organ failure. It poses a significant threat to society because of its high toxicity, potential use as a chemical weapon and lack of effective antidotal therapy. In this study, we investigated cell-permeable succinate prodrugs as potential treatment for acute FA intoxication. We hypothesized that succinate prodrugs would bypass FA-induced mitochondrial dysfunction, provide metabolic support, and prevent metabolic crisis during acute FA intoxication. To test this hypothesis, rats were exposed to FA (0.75 mg/kg) and treated with the succinate prodrug candidate NV354. Treatment efficacy was evaluated based on cardiac and cerebral mitochondrial respiration, mitochondrial content, metabolic profiles and tissue pathology. In the heart, FA increased concentrations of the TCA metabolite citrate (+ 4.2-fold, p < 0.01) and lowered ATP levels (- 1.9-fold, p < 0.001), confirming the inhibition of the TCA cycle by FA. High-resolution respirometry of cardiac mitochondria further revealed an impairment of mitochondrial complex V (CV)-linked metabolism, as evident by a reduced phosphorylation system control ratio (- 41%, p < 0.05). The inhibition of CV-linked metabolism is a novel mechanism of FA cardiac toxicity, which has implications for drug development and which NV354 was unable to counteract at the given dose. In the brain, FA induced the accumulation of ß-hydroxybutyrate (+ 1.4-fold, p < 0.05) and the reduction of mitochondrial complex I (CI)-linked oxidative phosphorylation (OXPHOSCI) (- 20%, p < 0.01), the latter of which was successfully alleviated by NV354. This promising effect of NV354 warrants further investigations to determine its potential neuroprotective effects.


Asunto(s)
Profármacos , Ratas , Animales , Profármacos/farmacología , Profármacos/metabolismo , Ácido Succínico/metabolismo , Mitocondrias/metabolismo , Fosforilación Oxidativa , Complejo I de Transporte de Electrón/metabolismo , Fluoroacetatos/farmacología , Fluoroacetatos/metabolismo
6.
Proc Natl Acad Sci U S A ; 114(10): 2705-2710, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28223503

RESUMEN

Diabetes is associated with impaired glucose metabolism in the presence of excess insulin. Glucose and fatty acids provide reducing equivalents to mitochondria to generate energy, and studies have reported mitochondrial dysfunction in type II diabetes patients. If mitochondrial dysfunction can cause diabetes, then we hypothesized that increased mitochondrial metabolism should render animals resistant to diabetes. This was confirmed in mice in which the heart-muscle-brain adenine nucleotide translocator isoform 1 (ANT1) was inactivated. ANT1-deficient animals are insulin-hypersensitive, glucose-tolerant, and resistant to high fat diet (HFD)-induced toxicity. In ANT1-deficient skeletal muscle, mitochondrial gene expression is induced in association with the hyperproliferation of mitochondria. The ANT1-deficient muscle mitochondria produce excess reactive oxygen species (ROS) and are partially uncoupled. Hence, the muscle respiration under nonphosphorylating conditions is increased. Muscle transcriptome analysis revealed the induction of mitochondrial biogenesis, down-regulation of diabetes-related genes, and increased expression of the genes encoding the myokines FGF21 and GDF15. However, FGF21 was not elevated in serum, and FGF21 and UCP1 mRNAs were not induced in liver or brown adipose tissue (BAT). Hence, increased oxidation of dietary-reducing equivalents by elevated muscle mitochondrial respiration appears to be the mechanism by which ANT1-deficient mice prevent diabetes, demonstrating that the rate of mitochondrial oxidation of calories is important in the etiology of metabolic disease.


Asunto(s)
Translocador 1 del Nucleótido Adenina/genética , Diabetes Mellitus Tipo 2/genética , Factores de Crecimiento de Fibroblastos/genética , Factor 15 de Diferenciación de Crecimiento/genética , Translocador 1 del Nucleótido Adenina/deficiencia , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/patología , Animales , Proliferación Celular/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/genética , Glucosa/metabolismo , Humanos , Resistencia a la Insulina/genética , Ratones , Mitocondrias Musculares/genética , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Músculo Esquelético/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transcriptoma/genética , Proteína Desacopladora 1/genética
7.
Proc Natl Acad Sci U S A ; 112(48): E6614-23, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26627253

RESUMEN

The experience of psychological stress triggers neuroendocrine, inflammatory, metabolic, and transcriptional perturbations that ultimately predispose to disease. However, the subcellular determinants of this integrated, multisystemic stress response have not been defined. Central to stress adaptation is cellular energetics, involving mitochondrial energy production and oxidative stress. We therefore hypothesized that abnormal mitochondrial functions would differentially modulate the organism's multisystemic response to psychological stress. By mutating or deleting mitochondrial genes encoded in the mtDNA [NADH dehydrogenase 6 (ND6) and cytochrome c oxidase subunit I (COI)] or nuclear DNA [adenine nucleotide translocator 1 (ANT1) and nicotinamide nucleotide transhydrogenase (NNT)], we selectively impaired mitochondrial respiratory chain function, energy exchange, and mitochondrial redox balance in mice. The resulting impact on physiological reactivity and recovery from restraint stress were then characterized. We show that mitochondrial dysfunctions altered the hypothalamic-pituitary-adrenal axis, sympathetic adrenal-medullary activation and catecholamine levels, the inflammatory cytokine IL-6, circulating metabolites, and hippocampal gene expression responses to stress. Each mitochondrial defect generated a distinct whole-body stress-response signature. These results demonstrate the role of mitochondrial energetics and redox balance as modulators of key pathophysiological perturbations previously linked to disease. This work establishes mitochondria as stress-response modulators, with implications for understanding the mechanisms of stress pathophysiology and mitochondrial diseases.


Asunto(s)
Regulación de la Expresión Génica , Inflamación/patología , Mitocondrias/fisiología , Estrés Psicológico , Translocador 1 del Nucleótido Adenina/genética , Hormona Adrenocorticotrópica/sangre , Alostasis , Animales , Catecolaminas/sangre , ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/genética , Genotipo , Hipocampo/metabolismo , Hipocampo/patología , Interleucina-6/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/patología , Proteínas Mitocondriales/genética , Mutación , NADH Deshidrogenasa/genética , NADP Transhidrogenasa AB-Específica/genética , Estrés Oxidativo , Transducción de Señal , Transcripción Genética
8.
Mol Cell Neurosci ; 63: 13-23, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25239010

RESUMEN

Mitochondrial dysfunction and oxidative stress are implicated in many neurodegenerative diseases. Mitochondria-targeted drugs that effectively decrease oxidative stress, protect mitochondrial energetics, and prevent neuronal loss may therefore lend therapeutic benefit to these currently incurable diseases. To investigate the efficacy of such drugs, we examined the effects of mitochondria-targeted antioxidants MitoQ10 and MitoE2 on neuronal death induced by neurotrophin deficiency. Our results indicate that MitoQ10 blocked apoptosis by preventing increased mitochondria-derived reactive oxygen species (ROS) and subsequent cytochrome c release, caspase activation, and mitochondrial damage in nerve growth factor (NGF)-deprived sympathetic neurons, while MitoE2 was largely ineffective. In this paradigm, the most proximal point of divergence was the ability of MitoQ10 to scavenge mitochondrial superoxide (O2(-)). MitoQ10 also prevented caspase-independent neuronal death in these cells demonstrating that the mitochondrial redox state significantly influences both apoptotic and nonapoptotic pathways leading to neuronal death. We suggest that mitochondria-targeted antioxidants may provide tools for delineating the role and significance of mitochondrial ROS in neuronal death and provide a new therapeutic approach for neurodegenerative conditions involving trophic factor deficits and multiple modes of cell death.


Asunto(s)
Apoptosis , Caspasas/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Antioxidantes/farmacología , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Factores de Crecimiento Nervioso/deficiencia , Neuronas/efectos de los fármacos , Compuestos Organofosforados/farmacología , Ubiquinona/análogos & derivados , Ubiquinona/farmacología
9.
Proc Natl Acad Sci U S A ; 109(49): 20065-70, 2012 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-23129651

RESUMEN

An animal model of Leber hereditary optic neuropathy (LHON) was produced by introducing the human optic atrophy mtDNA ND6 P25L mutation into the mouse. Mice with this mutation exhibited reduction in retinal function by elecroretinogram (ERG), age-related decline in central smaller caliber optic nerve fibers with sparing of larger peripheral fibers, neuronal accumulation of abnormal mitochondria, axonal swelling, and demyelination. Mitochondrial analysis revealed partial complex I and respiration defects and increased reactive oxygen species (ROS) production, whereas synaptosome analysis revealed decreased complex I activity and increased ROS but no diminution of ATP production. Thus, LHON pathophysiology may result from oxidative stress.


Asunto(s)
ADN Mitocondrial/genética , Modelos Animales de Enfermedad , NADH Deshidrogenasa/genética , Atrofia Óptica Hereditaria de Leber/genética , Atrofia Óptica Hereditaria de Leber/fisiopatología , Estrés Oxidativo/fisiología , Retina/patología , Adenosina Trifosfato/metabolismo , Factores de Edad , Animales , Enfermedades Desmielinizantes/etiología , Enfermedades Desmielinizantes/patología , Electrorretinografía , Humanos , Immunoblotting , Ratones , Mutación Missense/genética , Atrofia Óptica Hereditaria de Leber/complicaciones , Nervio Óptico/patología , Especies Reactivas de Oxígeno/metabolismo , Sinaptosomas/metabolismo
10.
Antioxidants (Basel) ; 13(10)2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39456479

RESUMEN

Although the precise molecular mechanisms responsible for neuronal death and motor dysfunction in late-onset Parkinson's disease (PD) are unknown, evidence suggests that mitochondrial dysfunction and neuroinflammation occur early, leading to a collective increase in reactive oxygen species (ROS) production and oxidative stress. However, the lack of methods for tracking oxidative stress in the living brain has precluded its use as a potential biomarker. The goal of the current study is to address this need through the evaluation of the first superoxide (O2•-)-sensitive radioactive tracer, [18F]ROStrace, in a model of late-onset PD. To achieve this goal, MitoPark mice with a dopaminergic (DA) neuron-specific deletion of transcription factor A mitochondrial (Tfam) were imaged with [18F]ROStrace from the prodromal phase to the end-stage of PD-like disease. Our data demonstrate [18F]ROStrace was sensitive to increased oxidative stress during the early stages of PD-like pathology in MitoPark mice, which persisted throughout the disease course. Similarly to PD patients, MitoPark males had the most severe parkinsonian symptoms and metabolic impairment. [18F]ROStrace retention was also highest in MitoPark males, suggesting oxidative stress as a potential mechanism underlying the male sex bias of PD. Furthermore, [18F]ROStrace may provide a method to identify patients at risk of Parkinson's before irreparable neurodegeneration occurs and enhance clinical trial design by identifying patients most likely to benefit from antioxidant therapies.

11.
Sci Rep ; 14(1): 13852, 2024 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879681

RESUMEN

Neurological and cardiac injuries are significant contributors to morbidity and mortality following pediatric in-hospital cardiac arrest (IHCA). Preservation of mitochondrial function may be critical for reducing these injuries. Dimethyl fumarate (DMF) has shown potential to enhance mitochondrial content and reduce oxidative damage. To investigate the efficacy of DMF in mitigating mitochondrial injury in a pediatric porcine model of IHCA, toddler-aged piglets were subjected to asphyxia-induced CA, followed by ventricular fibrillation, high-quality cardiopulmonary resuscitation, and random assignment to receive either DMF (30 mg/kg) or placebo for four days. Sham animals underwent similar anesthesia protocols without CA. After four days, tissues were analyzed for mitochondrial markers. In the brain, untreated CA animals exhibited a reduced expression of proteins of the oxidative phosphorylation system (CI, CIV, CV) and decreased mitochondrial respiration (p < 0.001). Despite alterations in mitochondrial content and morphology in the myocardium, as assessed per transmission electron microscopy, mitochondrial function was unchanged. DMF treatment counteracted 25% of the proteomic changes induced by CA in the brain, and preserved mitochondrial structure in the myocardium. DMF demonstrates a potential therapeutic benefit in preserving mitochondrial integrity following asphyxia-induced IHCA. Further investigation is warranted to fully elucidate DMF's protective mechanisms and optimize its therapeutic application in post-arrest care.


Asunto(s)
Asfixia , Dimetilfumarato , Modelos Animales de Enfermedad , Paro Cardíaco , Mitocondrias , Animales , Paro Cardíaco/metabolismo , Paro Cardíaco/tratamiento farmacológico , Asfixia/metabolismo , Asfixia/tratamiento farmacológico , Asfixia/complicaciones , Porcinos , Dimetilfumarato/farmacología , Dimetilfumarato/uso terapéutico , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Humanos , Miocardio/metabolismo , Miocardio/patología , Fosforilación Oxidativa/efectos de los fármacos
12.
Commun Biol ; 6(1): 22, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635485

RESUMEN

Patients with primary mitochondrial oxidative phosphorylation (OxPhos) defects present with fatigue and multi-system disorders, are often lean, and die prematurely, but the mechanistic basis for this clinical picture remains unclear. By integrating data from 17 cohorts of patients with mitochondrial diseases (n = 690) we find evidence that these disorders increase resting energy expenditure, a state termed hypermetabolism. We examine this phenomenon longitudinally in patient-derived fibroblasts from multiple donors. Genetically or pharmacologically disrupting OxPhos approximately doubles cellular energy expenditure. This cell-autonomous state of hypermetabolism occurs despite near-normal OxPhos coupling efficiency, excluding uncoupling as a general mechanism. Instead, hypermetabolism is associated with mitochondrial DNA instability, activation of the integrated stress response (ISR), and increased extracellular secretion of age-related cytokines and metabokines including GDF15. In parallel, OxPhos defects accelerate telomere erosion and epigenetic aging per cell division, consistent with evidence that excess energy expenditure accelerates biological aging. To explore potential mechanisms for these effects, we generate a longitudinal RNASeq and DNA methylation resource dataset, which reveals conserved, energetically demanding, genome-wide recalibrations. Taken together, these findings highlight the need to understand how OxPhos defects influence the energetic cost of living, and the link between hypermetabolism and aging in cells and patients with mitochondrial diseases.


Asunto(s)
Enfermedades Mitocondriales , Fosforilación Oxidativa , Humanos , Longevidad , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo
13.
J Neurosci ; 31(44): 15703-15, 2011 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22049413

RESUMEN

Considerable evidence suggests that mitochondrial dysfunction and oxidative stress contribute to the progression of Alzheimer's disease (AD). We examined the ability of the novel mitochondria-targeted antioxidant MitoQ (mitoquinone mesylate: [10-(4,5-dimethoxy-2-methyl-3,6-dioxo-1,4-cycloheexadienl-yl) decyl triphenylphosphonium methanesulfonate]) to prevent AD-like pathology in mouse cortical neurons in cell culture and in a triple transgenic mouse model of AD (3xTg-AD). MitoQ attenuated ß-amyloid (Aß)-induced neurotoxicity in cortical neurons and also prevented increased production of reactive species and loss of mitochondrial membrane potential (Δψ(m)) in them. To determine whether the mitochondrial protection conferred by MitoQ was sufficient to prevent the emergence of AD-like neuropathology in vivo, we treated young female 3xTg-AD mice with MitoQ for 5 months and analyzed the effect on the progression of AD-like pathologies. Our results show that MitoQ prevented cognitive decline in these mice as well as oxidative stress, Aß accumulation, astrogliosis, synaptic loss, and caspase activation in their brains. The work presented herein suggests a central role for mitochondria in neurodegeneration and provides evidence supporting the use of mitochondria-targeted therapeutics in diseases involving oxidative stress and metabolic failure, namely AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Antioxidantes/uso terapéutico , Trastornos de la Memoria/prevención & control , Compuestos Organofosforados/uso terapéutico , Retención en Psicología/efectos de los fármacos , Percepción Espacial/efectos de los fármacos , Ubiquinona/análogos & derivados , Factores de Edad , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/farmacología , Péptidos beta-Amiloides/toxicidad , Análisis de Varianza , Animales , Animales Recién Nacidos , Caspasas/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Células Cultivadas , Corteza Cerebral/citología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Ensayo de Inmunoadsorción Enzimática/métodos , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/etiología , Gliosis/prevención & control , Glutatión/metabolismo , Humanos , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/genética , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/etiología , Trastornos de la Memoria/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Fragmentos de Péptidos/toxicidad , Rodaminas/metabolismo , Factores de Tiempo , Tirosina/análogos & derivados , Tirosina/metabolismo , Ubiquinona/uso terapéutico
14.
EJNMMI Res ; 12(1): 43, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35895177

RESUMEN

BACKGROUND: Oxidative stress is implicated in the pathogenesis of the most common neurodegenerative diseases, such as Alzheimer's disease (AD). However, tracking oxidative stress in the brain has proven difficult and impeded its use as a biomarker. Herein, we investigate the utility of a novel positron emission tomography (PET) tracer, [18F]ROStrace, as a biomarker of oxidative stress throughout the course of AD in the well-established APP/PS1 double-mutant mouse model. PET imaging studies were conducted in wild-type (WT) and APP/PS1 mice at 3 different time points, representing early (5 mo.), middle (10 mo.), and advanced (16 mo.) life (n = 6-12, per sex). Semi-quantitation SUVRs of the plateau phase (40-60 min post-injection; SUVR40-60) of ten brain subregions were designated by the Mirrione atlas and analyzed by Pmod. Statistical parametric mapping (SPM) was used to distinguish brain regions with elevated ROS in APP/PS1 relative to WT in both sexes. The PET studies were validated by ex vivo autoradiography and immunofluorescence with the parent compound, dihydroethidium. RESULTS: [18F]ROStrace retention was increased in the APP/PS1 brain compared to age-matched controls by 10 mo. of age (p < 0.0001) and preceded the accumulation of oxidative damage in APP/PS1 neurons at 16 mo. (p < 0.005). [18F]ROStrace retention and oxidative damages were higher and occurred earlier in female APP/PS1 mice as measured by PET (p < 0.001), autoradiography, and immunohistochemistry (p < 0.05). [18F]ROStrace differences emerged midlife, temporally and spatially correlating with increased Aß burden (r2 = 0.36; p = 0.0003), which was also greatest in the female brain (p < 0.001). CONCLUSIONS: [18F]ROStrace identifies increased oxidative stress and neuroinflammation in APP/PS1 female mice, concurrent with increased amyloid burden midlife. Differences in oxidative stress during this crucial time may partially explain the sexual dimorphism in AD. [18F]ROStrace may provide a long-awaited tool to stratify at-risk patients who may benefit from antioxidant therapy prior to irreparable neurodegeneration.

15.
Sci Rep ; 12(1): 20329, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36434021

RESUMEN

Pesticides account for hundreds of millions of cases of acute poisoning worldwide each year, with organophosphates (OPs) being responsible for the majority of all pesticide-related deaths. OPs inhibit the enzyme acetylcholinesterase (AChE), which leads to impairment of the central- and peripheral nervous system. Current standard of care (SOC) alleviates acute neurologic-, cardiovascular- and respiratory symptoms and reduces short term mortality. However, survivors often demonstrate significant neurologic sequelae. This highlights the critical need for further development of adjunctive therapies with novel targets. While the inhibition of AChE is thought to be the main mechanism of injury, mitochondrial dysfunction and resulting metabolic crisis may contribute to the overall toxicity of these agents. We hypothesized that the mitochondrially targeted succinate prodrug NV354 would support mitochondrial function and reduce brain injury during acute intoxication with the OP diisopropylfluorophosphate (DFP). To this end, we developed a rat model of acute DFP intoxication and evaluated the efficacy of NV354 as adjunctive therapy to SOC treatment with atropine and pralidoxime. We demonstrate that NV354, in combination with atropine and pralidoxime therapy, significantly improved cerebral mitochondrial complex IV-linked respiration and reduced signs of brain injury in a rodent model of acute DFP exposure.


Asunto(s)
Lesiones Encefálicas , Intoxicación por Organofosfatos , Profármacos , Animales , Ratas , Intoxicación por Organofosfatos/tratamiento farmacológico , Atropina/farmacología , Atropina/uso terapéutico , Profármacos/farmacología , Isoflurofato/toxicidad , Ácido Succínico , Acetilcolinesterasa/metabolismo , Roedores/metabolismo , Succinatos , Mitocondrias/metabolismo , Lesiones Encefálicas/tratamiento farmacológico
16.
J Am Heart Assoc ; 9(9): e015032, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32321350

RESUMEN

Background Hyperoxia during cardiopulmonary resuscitation (CPR) may lead to oxidative injury from mitochondrial-derived reactive oxygen species, despite guidelines recommending 1.0 inspired oxygen during CPR. We hypothesized exposure to 1.0 inspired oxygen during CPR would result in cerebral hyperoxia, higher mitochondrial-derived reactive oxygen species, increased oxidative injury, and similar survival compared with those exposed to 21% oxygen. Methods and Results Four-week-old piglets (n=25) underwent asphyxial cardiac arrest followed by randomization and blinding to CPR with 0.21 (n=10) or 1.0 inspired oxygen (n=10) through 10 minutes post return of spontaneous circulation. Sham was n=5. Survivors received 4 hours of protocolized postarrest care, whereupon brain was obtained for mitochondrial analysis and neuropathology. Groups were compared using Kruskal-Wallis test, Wilcoxon rank-sum test, and generalized estimating equations regression models. Both 1.0 and 0.21 groups were similar in systemic hemodynamics and cerebral blood flow, as well as survival (8/10). The 1.0 animals had relative cerebral hyperoxia during CPR and immediately following return of spontaneous circulation (brain tissue oxygen tension, 85% [interquartile range, 72%-120%] baseline in 0.21 animals versus 697% [interquartile range, 515%-721%] baseline in 1.0 animals; P=0.001 at 10 minutes postarrest). Cerebral mitochondrial reactive oxygen species production was higher in animals treated with 1.0 compared with 0.21 (P<0.03). Exposure to 1.0 oxygen led to increased cerebral oxidative injury to proteins and lipids, as evidenced by significantly higher protein carbonyls and 4-hydroxynoneals compared with 0.21 (P<0.05) and sham (P<0.001). Conclusions Exposure to 1.0 inspired oxygen during CPR caused cerebral hyperoxia during resuscitation, and resultant increased mitochondrial-derived reactive oxygen species and oxidative injury following cardiac arrest.


Asunto(s)
Encéfalo/metabolismo , Reanimación Cardiopulmonar/efectos adversos , Paro Cardíaco/terapia , Hiperoxia/complicaciones , Estrés Oxidativo , Oxígeno/toxicidad , Síndrome de Paro Post-Cardíaco/etiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Asfixia/complicaciones , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Paro Cardíaco/etiología , Paro Cardíaco/fisiopatología , Peroxidación de Lípido , Mitocondrias/metabolismo , Mitocondrias/patología , Síndrome de Paro Post-Cardíaco/metabolismo , Síndrome de Paro Post-Cardíaco/patología , Carbonilación Proteica , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , Sus scrofa
17.
Cell Metab ; 29(1): 78-90.e5, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30174309

RESUMEN

Nuclear-encoded mutations causing metabolic and degenerative diseases have highly variable expressivity. Patients sharing the homozygous mutation (c.523delC) in the adenine nucleotide translocator 1 gene (SLC25A4, ANT1) develop cardiomyopathy that varies from slowly progressive to fulminant. This variability correlates with the mitochondrial DNA (mtDNA) lineage. To confirm that mtDNA variants can modulate the expressivity of nuclear DNA (nDNA)-encoded diseases, we combined in mice the nDNA Slc25a4-/- null mutation with a homoplasmic mtDNA ND6P25L or COIV421A variant. The ND6P25L variant significantly increased the severity of cardiomyopathy while the COIV421A variant was phenotypically neutral. The adverse Slc25a4-/- and ND6P25L combination was associated with impaired mitochondrial complex I activity, increased oxidative damage, decreased l-Opa1, altered mitochondrial morphology, sensitization of the mitochondrial permeability transition pore, augmented somatic mtDNA mutation levels, and shortened lifespan. The strikingly different phenotypic effects of these mild mtDNA variants demonstrate that mtDNA can be an important modulator of autosomal disease.


Asunto(s)
Cardiomiopatías/genética , ADN Mitocondrial/genética , Complejo I de Transporte de Electrón/genética , Mitocondrias/genética , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Mutación
18.
Mol Neurobiol ; 55(1): 382-389, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-27957682

RESUMEN

Withdrawal of nerve growth factor (NGF) from sympathetic neurons causes their apoptotic death. Activation of c-Jun NH2-terminal kinase (JNK) may contribute to this death by the induction and phosphorylation of pro-apoptotic Bcl-2 proteins, such as Bax, that are involved in cytochrome c release from mitochondria and reactive oxygen species (ROS) production. Induction of either JNK or ROS may stimulate the other, and both may regulate release of apoptogenic factors from the mitochondria. In order to discern the relationship between JNK and ROS in apoptosis, we treated NGF-deprived, mouse sympathetic neurons with a JNK inhibitor and examined the effect on several important apoptotic events. Block of JNK activation prevented induction of c-Jun expression and resulted in a dose-dependent, yet surprisingly modest, increase in cell survival after 48 h of NGF deprivation. JNK suppression was also not sufficient to prevent the elevation in ROS or the release of cytochrome c from the mitochondria in NGF-deprived sympathetic neurons. Bax deletion prevents apoptotic death of NGF-deprived neurons by preventing release of cytochrome c from their mitochondria. It also prevents increased ROS on NGF deprivation. However, we found that induction of c-Jun in cells lacking Bax was equivalent to that in wild-type neurons. Our results suggest that while JNK activation plays an important role in many forms of apoptosis, it may not be a crucial regulator of Bax-dependent events involved in the apoptotic death of mouse sympathetic neurons deprived of NGF and that ROS is not involved in its activation in these cells.


Asunto(s)
Citocromos c/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Factor de Crecimiento Nervioso/deficiencia , Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ganglio Cervical Superior/metabolismo , Fibras Adrenérgicas/metabolismo , Fibras Adrenérgicas/patología , Animales , Muerte Celular/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Activación Enzimática/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/patología , Ganglio Cervical Superior/patología
20.
Cell Rep ; 15(2): 229-37, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27050514

RESUMEN

Mitochondrial dysfunction has been increasingly linked to neurodevelopmental disorders such as intellectual disability, childhood epilepsy, and autism spectrum disorder, conditions also associated with cortical GABAergic interneuron dysfunction. Although interneurons have some of the highest metabolic demands in the postnatal brain, the importance of mitochondria during interneuron development is unknown. We find that interneuron migration from the basal forebrain to the neocortex is highly sensitive to perturbations in oxidative phosphorylation. Both pharmacologic and genetic inhibition of adenine nucleotide transferase 1 (Ant1) disrupts the non-radial migration of interneurons, but not the radial migration of cortical projection neurons. The selective dependence of cortical interneuron migration on oxidative phosphorylation may be a mechanistic pathway upon which multiple developmental and metabolic pathologies converge.


Asunto(s)
Movimiento Celular , Corteza Cerebral/patología , Mitocondrias/metabolismo , Enfermedades Mitocondriales/patología , Neuronas/metabolismo , Translocador 1 del Nucleótido Adenina/deficiencia , Translocador 1 del Nucleótido Adenina/metabolismo , Animales , Centrosoma/metabolismo , Embrión de Mamíferos/patología , Femenino , Interneuronas/patología , Masculino , Ratones Endogámicos C57BL , Mutación/genética , Fosforilación Oxidativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA