Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Breast Cancer Res ; 26(1): 78, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750591

RESUMEN

BACKGROUND: Metastatic breast cancer is a leading cause of cancer death in woman. Current treatment options are often associated with adverse side effects and poor outcomes, demonstrating the need for effective new treatments. Immunotherapies can provide durable outcomes in many cancers; however, limited success has been achieved in metastatic triple negative breast cancer. We tested whether combining different immunotherapies can target metastatic triple negative breast cancer in pre-clinical models. METHODS: Using primary and metastatic 4T1 triple negative mammary carcinoma models, we examined the therapeutic effects of oncolytic vesicular stomatitis virus (VSVΔM51) engineered to express reovirus-derived fusion associated small transmembrane proteins p14 (VSV-p14) or p15 (VSV-p15). These viruses were delivered alone or in combination with natural killer T (NKT) cell activation therapy mediated by adoptive transfer of α-galactosylceramide-loaded dendritic cells. RESULTS: Treatment of primary 4T1 tumors with VSV-p14 or VSV-p15 alone increased immunogenic tumor cell death, attenuated tumor growth, and enhanced immune cell infiltration and activation compared to control oncolytic virus (VSV-GFP) treatments and untreated mice. When combined with NKT cell activation therapy, oncolytic VSV-p14 and VSV-p15 reduced metastatic lung burden to undetectable levels in all mice and generated immune memory as evidenced by enhanced in vitro recall responses (tumor killing and cytokine production) and impaired tumor growth upon rechallenge. CONCLUSION: Combining NKT cell immunotherapy with enhanced oncolytic virotherapy increased anti-tumor immune targeting of lung metastasis and presents a promising treatment strategy for metastatic breast cancer.


Asunto(s)
Células T Asesinas Naturales , Viroterapia Oncolítica , Virus Oncolíticos , Animales , Femenino , Ratones , Células T Asesinas Naturales/inmunología , Viroterapia Oncolítica/métodos , Humanos , Línea Celular Tumoral , Virus Oncolíticos/genética , Virus Oncolíticos/inmunología , Inmunoterapia/métodos , Virus de la Estomatitis Vesicular Indiana/genética , Virus de la Estomatitis Vesicular Indiana/inmunología , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/patología , Terapia Combinada , Metástasis de la Neoplasia , Vesiculovirus/genética , Células Dendríticas/inmunología , Neoplasias de la Mama/terapia , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Modelos Animales de Enfermedad
2.
Mol Cell Biochem ; 477(8): 2059-2071, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35449483

RESUMEN

Non-alcoholic steatohepatitis (NASH) is a rapidly growing liver disease. The chemoattractant chemerin is abundant in hepatocytes, and hepatocyte expressed prochemerin protected from NASH. Prochemerin is inactive and different active isoforms have been described. Here, the effect of hepatocyte expressed muChem-156, a highly active murine chemerin isoform, was studied in the methionine-choline deficient dietary model of NASH. Mice overexpressing muChem-156 had higher hepatic chemerin protein. Serum chemerin levels and the capability of serum to activate the chemerin receptors was unchanged showing that the liver did not release active chemerin. Notably, activation of the chemerin receptors by hepatic vein blood did not increase in parallel to total chemerin protein in patients with liver cirrhosis. In experimental NASH, muChem-156 had no effect on liver lipids. Accordingly, overexpression of active chemerin in hepatocytes or treatment of hepatocytes with recombinant chemerin did not affect cellular triglyceride and cholesterol levels. Importantly, overexpression of muChem-156 in the murine liver did not change the hepatic expression of inflammatory and profibrotic genes. The downstream targets of chemerin such as p38 kinase were neither activated in the liver of muChem-156 producing mice nor in HepG2, Huh7 and Hepa1-6 cells overexpressing this isoform. Recombinant chemerin had no effect on global gene expression of primary human hepatocytes and hepatic stellate cells within 24 h of incubation. Phosphorylation of p38 kinase was, however, increased upon short-time incubation of HepG2 cells with chemerin. These findings show that muChem-156 overexpression in hepatocytes does not protect from liver steatosis and inflammation.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Quimiocinas , Modelos Animales de Enfermedad , Células Estrelladas Hepáticas/metabolismo , Hepatocitos/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Hígado/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Isoformas de Proteínas/metabolismo
3.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003572

RESUMEN

Murine chemerin is C-terminally processed to the bioactive isoforms, muChem-156 and muChem-155, among which the longer variant protects from hepatocellular carcinoma (HCC). However, the role of muChem-155 is mostly unknown. Here, we aimed to compare the effects of these isoforms on the proliferation, migration and the secretome of the human hepatocyte cell lines HepG2 and Huh7 and the murine Hepa1-6 cell line. Therefore, huChem-157 and -156 were overexpressed in the human cells, and the respective murine variants, muChem-156 and -155, in the murine hepatocytes. Both chemerin isoforms produced by HepG2 and Hepa1-6 cells activated the chemerin receptors chemokine-like receptor 1 (CMKLR1) and G protein-coupled receptor 1 (GPR1). HuChem-157 was the active isoform in the Huh7 cell culture medium. The potencies of muChem-155 and muChem-156 to activate human GPR1 and mouse CMKLR1 were equivalent. Human CMKLR1 was most responsive to muChem-156. Chemerin variants showed no effect on cell viability and proliferation. Activation of the mitogen-activated protein kinases Erk1/2 and p38, and protein levels of the epithelial-mesenchymal transition marker, E-cadherin, were not regulated by the chemerin variants. Migration was reduced in HepG2 and Hepa1-6 cells by the longer isoform. Protective effects of chemerin in HCC include the modulation of cytokines but huChem-156 and huChem-157 overexpression did not change IL-8, CCL20 or osteopontin in the hepatocytes. The conditioned medium of the transfected hepatocytes failed to alter these soluble factors in the cell culture medium of peripheral blood mononuclear cells (PBMCs). Interestingly, the cell culture medium of Huh7 cells producing the inactive variant huChem-155 reduced CCL2 and IL-8 in PBMCs. To sum up, huChem-157 and muChem-156 inhibited hepatocyte migration and may protect from HCC metastasis. HuChem-155 was the only human isoform exerting anti-inflammatory effects on immune cells.


Asunto(s)
Quimiocinas/genética , Inflamación/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Receptores de Quimiocina/genética , Receptores Acoplados a Proteínas G/genética , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Células Hep G2 , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Inflamación/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones , Isoformas de Proteínas/genética
4.
Int J Mol Sci ; 21(20)2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33066326

RESUMEN

The chemokine chemerin exists as C-terminally processed isoforms whose biological functions are mostly unknown. A highly active human chemerin variant (huChem-157) was protective in experimental hepatocellular carcinoma (HCC) models. Hepatic stellate cells (HSCs) are central mediators of hepatic fibrogenesis and carcinogenesis and express the chemerin receptors chemokine-like receptor 1 (CMKLR1) and G protein-coupled receptor 1 (GPR1). Here we aimed to analyse the effect of chemerin isoforms on the viability, proliferation and secretome of the human HSC cell line LX-2. Therefore, huChem-157, 156 and 155 were over-expressed in LX-2 cells, which have low endogenous chemerin levels. HuChem-157 produced in LX-2 cells activated CMKLR1 and GPR1, and huChem-156 modestly induced GPR1 signaling. HuChem-155 is an inactive chemerin variant. Chemerin isoforms had no effect on cell viability and proliferation. Cellular expression of the fibrotic proteins galectin-3 and alpha-smooth muscle actin was not regulated by any chemerin isoform. HuChem-156 increased IL-6, IL-8 and galectin-3 in cell media. HuChem-157 was ineffective, and accordingly, did not enhance levels of these proteins in media of primary human hepatic stellate cells when added exogenously. These analyses provide evidence that huChem-156 is the biologic active chemerin variant in hepatic stellate cells and acts as a pro-inflammatory factor.


Asunto(s)
Quimiocinas/metabolismo , Células Estrelladas Hepáticas/metabolismo , Actinas/metabolismo , Línea Celular , Proliferación Celular , Células Cultivadas , Quimiocinas/genética , Galectina 3/metabolismo , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Quimiocina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
5.
FASEB J ; : fj201800479, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29906243

RESUMEN

Measures of the adipokine chemerin are elevated in multiple cardiovascular diseases, including hypertension, but little mechanistic work has been done to implicate chemerin as being causative in such diseases. The chemerin knockout (KO) rat was created to test the hypothesis that removal of chemerin would reduce pressure in the normal and hypertensive state. Western analyses confirmed loss of chemerin in the plasma and tissues of the KO vs. wild-type (WT) rats. Chemerin concentration in plasma and tissues was lower in WT females than in WT males, as determined by Western analysis. Conscious male and female KO rats had modest differences in baseline measures vs. the WT that included systolic, diastolic, mean arterial and pulse pressures, and heart rate, all measured telemetrically. The mineralocorticoid deoxycorticosterone acetate (DOCA) and salt water, combined with uninephrectomy as a hypertensive stimulus, elevated mean and systolic blood pressures of the male KO higher than the male WT. By contrast, all pressures in the female KO were lower than their WT throughout DOCA-salt treatment. These results revealed an unexpected sex difference in chemerin expression and the ability of chemerin to modify blood pressure in response to a hypertensive challenge.-Watts, S. W., Darios, E. S., Mullick, A. E., Garver, H., Saunders, T. L., Hughes, E. D., Filipiak, W. E., Zeidler, M. G., McMullen, N., Sinal, C. J., Kumar, R. K., Ferland, D. J., Fink, G. D. The chemerin knockout rat reveals chemerin dependence in female, but not male, experimental hypertension.

6.
Stem Cells ; 35(3): 711-724, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27733019

RESUMEN

Bone remodeling is a dynamic process requiring the coordinated action of formative (osteoblast) and resorptive (osteoclast) cell populations. An imbalance of the development and function of these cell types underlies several chronic bone loss disorders such as osteoporosis. Increased bone marrow adipocyte numbers commonly occur with bone loss disorders and numerous studies have documented an inverse relationship between bone marrow fat and bone formation. Osteoblasts and adipocytes derive in a competitive fashion from a common mesenchymal stem cell (MSC) precursor. Generally, factors that promote MSC adipogenesis inhibit osteoblastogenesis and thereby, reduce bone formation. Previously we established that the secreted protein chemerin regulates adipogenic and osteoblastogenic differentiation of MSCs by signaling through chemokine-like receptor 1 (CMKLR1). However, the fundamental mechanisms by which chemerin/CMKLR1 influences lineage determination remain largely uncharacterized. Herein, we provide experimental evidence that chemerin/CMKLR1 regulates canonical Wnt signaling in MSCs by influencing the expression, subcellular location, and transcriptional activity of the central Wnt transducer, ß-catenin. Moreover, we provide evidence that CMKLR1 is a novel Wnt responsive gene that functions in a negative feedback loop to limit osteoblastogenic Wnt signaling. Mechanistically, this entails Notch-dependent changes in the expression and function of key adipogenic and osteoblastogenic transcription factors, cell cycle proteins and chromatin remodeling enzymes. Consistent with this, MSCs from CMKLR1 knockout (-/-) mice exhibited similar dependency on Notch signaling to maintain osteoblastogenic differentiation. Taken together, our findings support a fundamental biological function for chemerin/CMKLR1 to balance osteoblastogenic and adipogenic signaling and thereby contribute to the maintenance of pluripotency in MSCs. Stem Cells 2017;35:711-724.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Receptores Acoplados a Proteínas G/genética , Vía de Señalización Wnt/genética , Adipogénesis/genética , Animales , Diferenciación Celular/genética , Quimiocinas/metabolismo , Ciclina D1/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Histona Desacetilasas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Osteogénesis/genética , PPAR gamma/metabolismo , Receptores de Quimiocina , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Ubiquitinación , beta Catenina/metabolismo
7.
Stem Cells ; 31(10): 2172-82, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23766088

RESUMEN

Bone is a dynamic tissue that is continuously remodeled through the action of formative osteoblasts and resorptive osteoclasts. Chemerin is a secreted protein that activates chemokine-like receptor 1 (CMKLR1), a G protein-coupled receptor expressed by various cell types including adipocytes, osteoblasts, mesenchymal stem cells (MSCs), and macrophages. Previously, we identified chemerin as a regulator of adipocyte and osteoblast differentiation of MSCs. Herein we examined the role of chemerin in Lin(-) Sca1(+) c-kit(+) CD34(+) hematopoietic stem cell (HSC) osteoclastogenesis. We found that HSCs expressed both chemerin and CMKLR1 mRNA and secreted chemerin protein into the extracellular media. Neutralization of chemerin with a blocking antibody beginning prior to inducing osteoclast differentiation resulted in a near complete loss of osteoclastogenesis as evidenced by reduced marker gene expression and matrix resorption. This effect was conserved in an independent model of RAW264.7 cell osteoclastogenesis. Reintroduction of chemerin by reversal of neutralization rescued osteoclast differentiation indicating that chemerin signaling is essential to permit HSC differentiation into osteoclasts but following blockade the cells maintained the potential to differentiate into osteoclasts. Mechanistically, neutralization of chemerin blunted the early receptor activator of nuclear factor-kappa B ligand induction of nuclear factor of activated T-cells 2 (NFAT2), Fos, Itgb3, and Src associated with preosteoclast formation. Consistent with a central role for NFAT2, induction or activation of NFAT2 by forced expression or stimulation of intracellular calcium release rescued the impairment of HSC osteoclastogenesis caused by chemerin neutralization. Taken together, these data support a novel autocrine/paracrine role for chemerin in regulating osteoclast differentiation of HSCs through modulating intracellular calcium and NFAT2 expression/activation.


Asunto(s)
Diferenciación Celular , Factores Quimiotácticos/fisiología , Células Madre Hematopoyéticas/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Animales , Anticuerpos/farmacología , Línea Celular , Quimiocinas , Factores Quimiotácticos/antagonistas & inhibidores , Expresión Génica , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción NFATC/metabolismo , Osteoclastos/metabolismo , Ligando RANK/fisiología , Receptores de Quimiocina , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
8.
Viruses ; 15(7)2023 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-37515296

RESUMEN

Vesicle-encapsulated nonenveloped viruses are a recently recognized alternate form of nonenveloped viruses that can avoid immune detection and potentially increase systemic transmission. Avian orthoreoviruses (ARVs) are the leading cause of various disease conditions among birds and poultry. However, whether ARVs use cellular vesicle trafficking routes for egress and cell-to-cell transmission is still poorly understood. We demonstrated that fusogenic ARV-infected quail cells generated small (~100 nm diameter) extracellular vesicles (EVs) that contained electron-dense material when observed by transmission electron microscope. Cryo-EM tomography indicated that these vesicles did not contain ARV virions or core particles, but the EV fractions of OptiPrep gradients did contain a small percent of the ARV virions released from cells. Western blotting of detergent-treated EVs revealed that soluble virus proteins and the fusogenic p10 FAST protein were contained within the EVs. Notably, virus particles mixed with the EVs were up to 50 times more infectious than virions alone. These results suggest that EVs and perhaps fusogenic FAST-EVs could contribute to ARV virulence.


Asunto(s)
Vesículas Extracelulares , Orthoreovirus Aviar , Vesículas Extracelulares/metabolismo , Proteínas Virales/metabolismo
9.
Biomedicines ; 10(1)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35052810

RESUMEN

Non-alcoholic steatohepatitis (NASH) is marked by macrophage infiltration and inflammation. Chemerin is a chemoattractant protein and is abundant in hepatocytes. The aim of this study was to gain insight into the role of hepatocyte-produced prochemerin in NASH. Therefore, mice were infected with adeno-associated virus 8 to direct hepatic overexpression of prochemerin in a methionine-choline deficient dietary model of NASH. At the end of the study, hepatic and serum chemerin were higher in the chemerin-expressing mice. These animals had less hepatic oxidative stress, F4/80 and CC-chemokine ligand 2 (CCL2) protein, and mRNA levels of inflammatory genes than the respective control animals. In order to identify the underlying mechanisms, prochemerin was expressed in hepatocytes and the hepatic stellate cells, LX-2. Here, chemerin had no effect on cell viability, production of inflammatory, or pro-fibrotic factors. Notably, cultivation of human peripheral blood mononuclear cells (PBMCs) in the supernatant of Huh7 cells overexpressing chemerin reduced CCL2, interleukin-6, and osteopontin levels in cell media. CCL2 was also low in RAW264.7 cells exposed to Hepa1-6 cell produced chemerin. In summary, the current study showed that prochemerin overexpression had little effect on hepatocytes and hepatic stellate cells. Of note, hepatocyte-produced chemerin deactivated PBMCs and protected against inflammation in experimental NASH.

10.
J Infect Dev Ctries ; 15(5): 653-656, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-34106888

RESUMEN

Understanding the efficacy and durability of heterologous immunization schedules against SARS-CoV-2 is critical, as supply demands and vaccine choices become significant issues in the global vaccination strategy. Here we characterize the neutralizing antibodies produced in two subjects who received combination immunizations against SARS-CoV-2, first with Covishield (Oxford-AstraZeneca) vaccine, followed 33 days later with a second dose (booster) shot of the Pfizer-BioNTech vaccine. Serum samples were collected 25 days following the primary vaccination and 13 days after the secondary Pfizer vaccination. Both subjects exhibited increased levels of isotype IgG and IgM antibodies directed against the entire spike protein following immunizations. These antibodies also exhibited increased reactivity with the receptor binding domain (RBD) in the spike protein and neutralized the infectivity of replicating vesicular stomatitis virus (VSV) that contains the COVID-19 coronavirus S protein gene in place of its normal G glycoprotein. This VSV pseudovirus also contains the reporter gene for enhanced green fluorescent protein (eGFP). Antibody titers against the spike protein and serum neutralization titers against the reporter virus are reported for the 2 heterologous vaccinated individuals and compared to a positive control derived from a convalescent patient and a negative control from an unexposed individual. The Pfizer-BioNTech vaccine increased antibody binding to the spike protein and RBD, and approached levels found in the convalescent positive control. Neutralizing antibodies against the VSV-S pseudovirus in the 2 subjects also approached levels in the convalescent sera. These results firmly validate the value of the Pfizer-BioNTech vaccine in boosting immunity following initial Covishield inoculation.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Inmunidad Humoral/efectos de los fármacos , Anticuerpos Neutralizantes/inmunología , COVID-19/prevención & control , Estudios de Casos y Controles , Femenino , Humanos , Masculino , SARS-CoV-2
11.
Dev Dyn ; 238(11): 2787-99, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19842178

RESUMEN

There is scant information on the fate of cardiac progenitor cells (CPC) in the embryonic heart after chamber specification. Here we simultaneously tracked three lineage-specific markers (Nkx2.5, MLC2v, and ANF) and confirmed that CPCs with an Nkx2.5+MLC2v-ANF- phenotype are present in the embryonic (E) day 11.5 mouse ventricular myocardium. We demonstrated that these CPCs could give rise to working cardiomyocytes and conduction system cells. Using a two-photon imaging analysis, we found that the majority of CPCs are not capable of developing Ca2+ transients in response to beta-adrenergic receptor stimulation. In contrast, Nkx2.5+ cells expressing MLC2v but not ANF are capable of developing functional Ca2+ transients. We showed that Ca2+ transients could be invoked in Nkx2.5+MLC2v+ANF+ cells only upon inhibition of Gi, muscarinic receptors, or nitric oxide synthase (NOS) signaling pathways. Our data suggest that these inhibitory pathways may delay functional specification in a subset of developing ventricular cells.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Embrión de Mamíferos/embriología , Ventrículos Cardíacos/embriología , Mioblastos Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Factor Natriurético Atrial/metabolismo , Embrión de Mamíferos/metabolismo , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/ultraestructura , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/metabolismo , Ratones , Microscopía Electrónica de Transmisión , Mioblastos Cardíacos/ultraestructura , Miocardio/metabolismo , Miocardio/ultraestructura , Miocitos Cardíacos/ultraestructura , Cadenas Ligeras de Miosina/metabolismo , Óxido Nítrico Sintasa/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Muscarínicos/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo
12.
Viruses ; 12(7)2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32610593

RESUMEN

The Reoviridae family is the only non-enveloped virus family with members that use syncytium formation to promote cell-cell virus transmission. Syncytiogenesis is mediated by a fusion-associated small transmembrane (FAST) protein, a novel family of viral membrane fusion proteins. Previous evidence suggested the fusogenic reoviruses arose from an ancestral non-fusogenic virus, with the preponderance of fusogenic species suggesting positive evolutionary pressure to acquire and maintain the fusion phenotype. New phylogenetic analyses that included the atypical waterfowl subgroup of avian reoviruses and recently identified new orthoreovirus species indicate a more complex relationship between reovirus speciation and fusogenic capacity, with numerous predicted internal indels and 5'-terminal extensions driving the evolution of the orthoreovirus' polycistronic genome segments and their encoded FAST and fiber proteins. These inferred recombination events generated bi- and tricistronic genome segments with diverse gene constellations, they occurred pre- and post-orthoreovirus speciation, and they directly contributed to the evolution of the four extant orthoreovirus FAST proteins by driving both the gain and loss of fusion capability. We further show that two distinct post-speciation genetic events led to the loss of fusion in the waterfowl isolates of avian reovirus, a recombination event that replaced the p10 FAST protein with a heterologous, non-fusogenic protein and point substitutions in a conserved motif that destroyed the p10 assembly into multimeric fusion platforms.


Asunto(s)
Enfermedades de las Aves/virología , Evolución Molecular , Genoma Viral , Orthoreovirus/genética , Infecciones por Reoviridae/veterinaria , Proteínas Virales de Fusión/metabolismo , Secuencia de Aminoácidos , Animales , Animales Salvajes/virología , Anseriformes/virología , Mutación con Ganancia de Función , Especiación Genética , Células Gigantes/virología , Orthoreovirus/clasificación , Orthoreovirus/aislamiento & purificación , Orthoreovirus/fisiología , Filogenia , Infecciones por Reoviridae/virología , Alineación de Secuencia , Proteínas Virales de Fusión/genética
13.
J Cell Mol Med ; 13(9A): 2834-42, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18624775

RESUMEN

Recent studies have identified the existence of undifferentiated myocardial cells during early embryonic as well as post-natal stages of heart development. While primitive cells present in the precardiac mesoderm can differentiate into multiple cell types of the cardiovascular system, the developmental potential of undifferentiated cells identified in the ventricular myocardium after chamber formation is not well characterized. A deeper understanding of mechanisms regulating myocardial cell differentiation will provide further insights into the normal and pathological aspects of heart development. Here, we showed that Nkx2.5 positive and sarcomeric myosin negative cells were predominantly localized in the right ventricular myocardium of CD1 mice at E11.5 stage. We confirmed that myocardial regions negative for saromeric myosin were also devoid of atrial natriuretic factor (ANF). These observations are consistent with our previous study, which showed that ANF expression is restricted to moderately differentiated and mature myocardial cells in E11.5 myocardium of C3H/FeJ mice. Further, we found that the receptor c-Kit, a marker for early embryonic myocardial progenitor cells, is not expressed in the undifferentiated cells of the E11.5 myocardium. To monitor the differentiation potential of Nkx2.5(+)/ANF(-) cells in vitro, we developed a novel double fluorescent reporter system. Subsequently, we confirmed that the majority of Nkx2.5(+)/ANF(-) cells expressed mature myocyte markers such as sarcomeric myosin, MLC2V and alpha-cardiac actin after 48 hrs in culture, albeit at lower levels compared to Nkx2.5(+)/ANF(+) or Nkx2.5(-)/ANF(+) cell populations. Our results suggest that fluorescent reporters under the control of lineage-specific promoters can be used to study myocardial cell differentiation in response to various exogenous or pharmacological agents.


Asunto(s)
Diferenciación Celular , Embrión de Mamíferos/citología , Colorantes Fluorescentes/metabolismo , Genes Reporteros , Técnicas Genéticas , Miocardio/citología , Animales , Factor Natriurético Atrial/deficiencia , Factor Natriurético Atrial/metabolismo , Embrión de Mamíferos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/metabolismo , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/metabolismo , Proteínas Luminiscentes/metabolismo , Ratones , Miocardio/metabolismo , Miosinas/metabolismo , Reproducibilidad de los Resultados , Sarcómeros/metabolismo , Factores de Transcripción/metabolismo , Transfección , Transgenes/genética
14.
Mol Ther Oncolytics ; 6: 80-89, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28856238

RESUMEN

The reovirus fusion-associated small transmembrane (FAST) proteins are the smallest known viral fusogens (∼100-150 amino acids) and efficiently induce cell-cell fusion and syncytium formation in multiple cell types. Syncytium formation enhances cell-cell virus transmission and may also induce immunogenic cell death, a form of apoptosis that stimulates immune recognition of tumor cells. These properties suggest that FAST proteins might serve to enhance oncolytic virotherapy. The oncolytic activity of recombinant VSVΔM51 (an interferon-sensitive vesicular stomatitis virus [VSV] mutant) encoding the p14 FAST protein (VSV-p14) was compared with a similar construct encoding GFP (VSV-GFP) in cell culture and syngeneic BALB/c tumor models. Compared with VSV-GFP, VSV-p14 exhibited increased oncolytic activity against MCF-7 and 4T1 breast cancer spheroids in culture and reduced primary 4T1 breast tumor growth in vivo. VSV-p14 prolonged survival in both primary and metastatic 4T1 breast cancer models, and in a CT26 metastatic colon cancer model. As with VSV-GFP, VSV-p14 preferentially replicated in vivo in tumors and was cleared rapidly from other sites. Furthermore, VSV-p14 increased the numbers of activated splenic CD4, CD8, natural killer (NK), and natural killer T (NKT) cells, and increased the number of activated CD4 and CD8 cells in tumors. FAST proteins may therefore provide a multi-pronged approach to improving oncolytic virotherapy via syncytium formation and enhanced immune stimulation.

15.
J Endocrinol ; 222(2): 201-15, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24895415

RESUMEN

Chemerin is an adipose-derived signaling protein (adipokine) that regulates adipocyte differentiation and function, immune function, metabolism, and glucose homeostasis through activation of chemokine-like receptor 1 (CMKLR1). A second chemerin receptor, G protein-coupled receptor 1 (GPR1) in mammals, binds chemerin with an affinity similar to CMKLR1; however, the function of GPR1 in mammals is essentially unknown. Herein, we report that expression of murine Gpr1 mRNA is high in brown adipose tissue and white adipose tissue (WAT) and skeletal muscle. In contrast to chemerin (Rarres2) and Cmklr1, Gpr1 expression predominates in the non-adipocyte stromal vascular fraction of WAT. Heterozygous and homozygous Gpr1-knockout mice fed on a high-fat diet developed more severe glucose intolerance than WT mice despite having no difference in body weight, adiposity, or energy expenditure. Moreover, mice lacking Gpr1 exhibited reduced glucose-stimulated insulin levels and elevated glucose levels in a pyruvate tolerance test. This study is the first, to our knowledge, to report the effects of Gpr1 deficiency on adiposity, energy balance, and glucose homeostasis in vivo. Moreover, these novel results demonstrate that GPR1 is an active chemerin receptor that contributes to the regulation of glucose homeostasis during obesity.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Factores Quimiotácticos/metabolismo , Glucosa/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Obesidad/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Tejido Adiposo Pardo/metabolismo , Animales , Quimiocinas , Dieta Alta en Grasa/efectos adversos , Femenino , Homeostasis/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Obesos , Músculo Esquelético/metabolismo , ARN Mensajero/metabolismo , Receptores de Quimiocina/metabolismo , Receptores Acoplados a Proteínas G/deficiencia
16.
Can J Physiol Pharmacol ; 85(1): 1-15, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17487241

RESUMEN

Heart failure secondary to ischemic heart disease, hypertension, and myocardial infarction is a common cause of death in developed countries. Although pharmacological therapies are very effective, poor prognosis and shorter life expectancy of heart disease patients clearly indicate the need for alternative interventions to complement the present therapies. Since the progression of heart disease is associated with the loss of myocardial cells, the concept of donor cell transplantation into host myocardium is emerging as an attractive strategy to repopulate the damaged tissue. To this end, a number of donor cell types have been tested for their ability to increase the systolic function of diseased hearts in both experimental and clinical settings. Although initial clinical trials with bone marrow stem cells are encouraging, long-term consequences of such interventions are yet to be rigorously examined. While additional laboratory studies are required to address several issues in this field, there is also a clear need for further characterization of drug interactions with donor cells in these interventions. Here, we provide a brief summary of current pharmacological and cell-based therapies for heart disease. Further, we discuss the potential of various donor cell types in myocardial repair, mechanisms underlying functional improvement in cell-based therapies, as well as potential interactions between pharmacological and cell-based therapies.


Asunto(s)
Células Madre Adultas/trasplante , Cardiomiopatías/cirugía , Fármacos Cardiovasculares/uso terapéutico , Trasplante de Células/métodos , Células Madre Embrionarias/trasplante , Miocitos Cardíacos/trasplante , Células Madre Adultas/citología , Células Madre Adultas/efectos de los fármacos , Animales , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/patología , Fármacos Cardiovasculares/farmacología , Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Humanos , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Medicina Regenerativa/tendencias , Trasplante de Células Madre/métodos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA