RESUMEN
The SAGA coactivator complex is essential for eukaryotic transcription and comprises four distinct modules, one of which contains the ubiquitin hydrolase USP22. In yeast, the USP22 ortholog deubiquitylates H2B, resulting in Pol II Ser2 phosphorylation and subsequent transcriptional elongation. In contrast to this H2B-associated role in transcription, we report here that human USP22 contributes to the early stages of stimulus-responsive transcription, where USP22 is required for pre-initiation complex (PIC) stability. Specifically, USP22 maintains long-range enhancer-promoter contacts and controls loading of Mediator tail and general transcription factors (GTFs) onto promoters, with Mediator core recruitment being USP22-independent. In addition, we identify Mediator tail subunits MED16 and MED24 and the Pol II subunit RBP1 as potential non-histone substrates of USP22. Overall, these findings define a role for human SAGA within the earliest steps of transcription.
Asunto(s)
Ubiquitina Tiolesterasa/genética , Apoptosis , Estrés del Retículo Endoplásmico/genética , Células HCT116 , Humanos , Complejo Mediador/genética , Regiones Promotoras Genéticas , ARN Polimerasa II , Transcripción GenéticaRESUMEN
BACKGROUND: Black men consistently have higher rates of prostate cancer (PCA)- related mortality. Advances in PCA treatment, screening, and hereditary cancer assessment center around germline testing (GT). Of concern is the significant under-engagement of Black males in PCA GT, limiting the benefit of precision therapy and tailored cancer screening despite longstanding awareness of these disparities. To address these critical disparities, the Socioecological Model (SEM) was employed to develop comprehensive recommendations to overcome barriers and implement equitable strategies to engage Black males in PCA GT. METHODS: Clinical/research experts, national organization leaders, and community stakeholders spanning multiple regions in US and Africa participated in developing a framework for equity in PCA GT grounded in the SEM. A novel mixed-methods approach was employed to generate key areas to be addressed and informed statements for consensus consideration utilizing the modified Delphi model. Statements achieving strong consensus (> =75% agreement) were included in final equity frameworks addressing clinical/community engagement and research engagement. RESULTS: All societal levels of the SEM (interpersonal, institutional, community, and policy/advocacy) must deliver information about PCA GT to Black males that address benefits/limitations, clinical impact, hereditary cancer implications, with acknowledgment of mistrust (mean scores [MS] 4.57-5.00). Interpersonal strategies for information delivery included engagement of family/friends/peers/Black role models to improve education/awareness and overcome mistrust (MS 4.65-5.00). Institutional strategies included diversifying clinical, research, and educational programs and integrating community liaisons into healthcare institutions (MS 4.57-5.00). Community strategies included partnerships with healthcare institutions and visibility of healthcare providers/researchers at community events (MS 4.65-4.91). Policy/advocacy included improving partnerships between advocacy and healthcare/community organizations while protecting patient benefits (MS 4.57-5.00). Media strategies were endorsed for the first time at every level (MS 4.56-5.00). CONCLUSION: The SEM-based equity frameworks proposed provide the first multidisciplinary strategies dedicated to increase engagement of Black males in PCA GT, which are critical to reduce disparities in PCA-mortality through informing tailored screening, targeted therapy, and cascade testing in families.
Asunto(s)
Población Negra , Pruebas Genéticas , Disparidades en Atención de Salud , Neoplasias de la Próstata , Humanos , Masculino , África/etnología , Negro o Afroamericano , Técnica Delphi , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética , Estados UnidosRESUMEN
More than one-third of patients with locally advanced cervical cancer do not respond to chemoradiation therapy (CRT). We aimed to characterize the transcriptional landscape of paired human cervical tumors before and during CRT in order to gain insight into the evolution of treatment response and to elucidate mechanisms of treatment resistance. We prospectively collected cervical tumor biopsies from 115 patients both before and 3 weeks into CRT. RNA-sequencing, Gene Set Enrichment Analysis and HPV gene expression were performed on 20 paired samples that had adequate neoplastic tissue mid-treatment. Tumors from patients with no evidence of disease (NED) at last follow-up had enrichment in pathways related to the immune response both pretreatment and mid-treatment, while tumors from patients dead of disease (DOD) demonstrated enrichment in biosynthetic and mitotic pathways but not in immune-related pathways. Patients DOD had decreased expression of T-cell and cytolytic genes and increased expression of PD-L2 mid-treatment compared to patients NED. Histological and immunohistochemical analysis revealed a decrease in tumor-associated lymphocytes (TAL) during CRT in all patients but tumors from patients DOD had a significantly more pronounced decrease in TALs and CD8+ cells mid-treatment, which was validated in a larger mid-treatment cohort. Finally, patients DOD retained more HPV E6/E7 gene expression during CRT and this was associated with increased expression of genes driving mitosis, which was corroborated in vitro. Our results suggest that decreased local immune response and retained HPV gene expression may be acting together to promote treatment resistance during CRT in patients with cervical cancer.
Asunto(s)
Resistencia a Antineoplásicos , Regulación Viral de la Expresión Génica , Inmunomodulación/efectos de los fármacos , Papillomaviridae/genética , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/virología , Neoplasias del Cuello Uterino/etiología , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biopsia , Terapia Combinada , Resistencia a Antineoplásicos/inmunología , Femenino , Perfilación de la Expresión Génica , Humanos , Metástasis Linfática , Estadificación de Neoplasias , Papillomaviridae/clasificación , Papillomaviridae/inmunología , Infecciones por Papillomavirus/inmunología , Pronóstico , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/mortalidadRESUMEN
SUMMARY: An increased understanding of the role of the social determinants of health in cancer prevention, cancer care, and outcomes can lead to their integration into genetics and genomics as well as informing interventions and clinical trials, creating a comprehensive precision oncology framework.
Asunto(s)
Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Emparejamiento Base , Medicina de Precisión , Oncología Médica , GenómicaRESUMEN
The National Cancer Institute's (NCI) Cancer Center Support Grant mandates that NCI-Designated Cancer Centers establish a Community Outreach and Engagement (COE) component to help direct efforts at reducing cancer burden within their catchment areas. Despite the critical role of COE offices, little is known about how they track and evaluate outreach activities and outcomes. We gathered information on current practices from representatives of 40 out of 65 COE offices using an online survey. While nearly all responding centers (97.5%) tracked COE activities, no consensus existed on resources used and satisfaction with current solutions was mixed (51.0% not satisfied). Respondents expressed need for a centralized, standardized, and comprehensive tracking solution to capture outreach events and external partnerships, automate report generation, and ensure alignment with COE aims. This study highlights challenges COE offices face with resource limitations and a heterogeneity of activities to track, and the need for a standard evaluation framework.
RESUMEN
Clinical genomic testing of patient germline, tumor tissue, or plasma cell-free DNA can enable a personalized approach to cancer management and treatment. In prostate cancer (PCa), broad genotyping tests are now widely used to identify germline and/or somatic alterations in BRCA2 and other DNA damage repair genes. Alterations in these genes can confer cancer sensitivity to poly (ADP-ribose) polymerase inhibitors, are linked with poor prognosis, and can have potential hereditary cancer implications for family members. However, there is huge variability in genomic tests and reporting standards, meaning that for successful implementation of testing in clinical practice, end users must carefully select the most appropriate test for a given patient and critically interpret the results. In this white paper, we outline key pre- and post-test considerations for choosing a genomic test and evaluating reported variants, specifically for patients with advanced PCa. Test choice must be based on clinical context and disease state, availability and suitability of tumor tissue, and the genes and regions that are covered by the test. We describe strategies to recognize false positives or negatives in test results, including frameworks to assess low tumor fraction, subclonal alterations, clonal hematopoiesis, and pathogenic versus nonpathogenic variants. We assume that improved understanding among health care professionals and researchers of the nuances associated with genomic testing will ultimately lead to optimal patient care and clinical decision making.
Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Genes BRCA2 , GenómicaRESUMEN
Importance: Proton beam therapy is an emerging radiotherapy treatment for patients with cancer that may produce similar outcomes as traditional photon-based therapy for many cancers while delivering lower amounts of toxic radiation to surrounding tissue. Geographic proximity to a proton facility is a critical component of ensuring equitable access both for indicated diagnoses and ongoing clinical trials. Objective: To characterize the distribution of proton facilities in the US, quantify drive-time access for the population, and investigate the likelihood of long commutes for certain population subgroups. Design, Setting, and Participants: This population-based cross-sectional study analyzed travel times to proton facilities in the US. Census tract variables in the contiguous US were measured between January 1, 2017, and December 31, 2021. Statistical analysis was performed from September to November 2023. Exposures: Drive time in minutes to nearest proton facility. Population totals and prevalence of specific factors measured from the American Community Survey: age; race and ethnicity; insurance, disability, and income status; vehicle availability; broadband access; and urbanicity. Main Outcomes and Measures: Poor access to proton facilities was defined as having a drive-time commute of at least 4 hours to the nearest location. Median drive time and percentage of population with poor access were calculated for the entire population and by population subgroups. Univariable and multivariable odds of poor access were also calculated for certain population subgroups. Results: Geographic access was considered for 327â¯536â¯032 residents of the contiguous US (60â¯594â¯624 [18.5%] Hispanic, 17â¯974â¯186 [5.5%] non-Hispanic Asian, 40â¯146â¯994 [12.3%] non-Hispanic Black, and 195â¯265â¯639 [59.6%] non-Hispanic White; 282â¯031â¯819 [86.1%] resided in urban counties). The median (IQR) drive time to the nearest proton facility was 96.1 (39.6-195.3) minutes; 119.8 million US residents (36.6%) lived within a 1-hour drive of the nearest proton facility, and 53.6 million (16.4%) required a commute of at least 4 hours. Persons identifying as non-Hispanic White had the longest median (IQR) commute time at 109.8 (48.0-197.6) minutes. Multivariable analysis identified rurality (odds ratio [OR], 2.45 [95% CI, 2.27-2.64]), age 65 years or older (OR, 1.09 [95% CI, 1.06-1.11]), and living below the federal poverty line (OR, 1.22 [1.20-1.25]) as factors associated with commute times of at least 4 hours. Conclusions and Relevance: This cross-sectional study of drive-time access to proton beam therapy found that disparities in access existed among certain populations in the US. These results suggest that such disparities present a barrier to an emerging technology in cancer treatment and inhibit equitable access to ongoing clinical trials.
Asunto(s)
Accesibilidad a los Servicios de Salud , Disparidades en Atención de Salud , Neoplasias , Terapia de Protones , Viaje , Humanos , Terapia de Protones/estadística & datos numéricos , Estudios Transversales , Accesibilidad a los Servicios de Salud/estadística & datos numéricos , Neoplasias/radioterapia , Estados Unidos , Femenino , Masculino , Viaje/estadística & datos numéricos , Persona de Mediana Edad , Disparidades en Atención de Salud/estadística & datos numéricos , Anciano , Adulto , Factores de TiempoRESUMEN
Castration resistant prostate cancer (CRPC) remains an incurable disease stage with ineffective treatments options. Here, the androgen receptor (AR) coactivators CBP/p300, which are histone acetyltransferases, were identified as critical mediators of DNA damage repair (DDR) to potentially enhance therapeutic targeting of CRPC. Key findings demonstrate that CBP/p300 expression increases with disease progression and selects for poor prognosis in metastatic disease. CBP/p300 bromodomain inhibition enhances response to standard of care therapeutics. Functional studies, CBP/p300 cistrome mapping, and transcriptome in CRPC revealed that CBP/p300 regulates DDR. Further mechanistic investigation showed that CBP/p300 attenuation via therapeutic targeting and genomic knockdown decreases homologous recombination (HR) factors in vitro, in vivo, and in human prostate cancer (PCa) tumors ex vivo. Similarly, CBP/p300 expression in human prostate tissue correlates with HR factors. Lastly, targeting CBP/p300 impacts HR-mediate repair and patient outcome. Collectively, these studies identify CBP/p300 as drivers of PCa tumorigenesis and lay the groundwork to optimize therapeutic strategies for advanced PCa via CBP/p300 inhibition, potentially in combination with AR-directed and DDR therapies.
RESUMEN
Castration resistant prostate cancer (CRPC) remains an incurable disease stage with ineffective treatments options. Here, the androgen receptor (AR) coactivators CBP/p300, which are histone acetyltransferases, were identified as critical mediators of DNA damage repair (DDR) to potentially enhance therapeutic targeting of CRPC. Key findings demonstrate that CBP/p300 expression increases with disease progression and selects for poor prognosis in metastatic disease. CBP/p300 bromodomain inhibition enhances response to standard of care therapeutics. Functional studies, CBP/p300 cistrome mapping, and transcriptome in CRPC revealed that CBP/p300 regulates DDR. Further mechanistic investigation showed that CBP/p300 attenuation via therapeutic targeting and genomic knockdown decreases homologous recombination (HR) factors in vitro, in vivo, and in human prostate cancer (PCa) tumors ex vivo. Similarly, CBP/p300 expression in human prostate tissue correlates with HR factors. Lastly, targeting CBP/p300 impacts HR-mediate repair and patient outcome. Collectively, these studies identify CBP/p300 as drivers of PCa tumorigenesis and lay the groundwork to optimize therapeutic strategies for advanced PCa via CBP/p300 inhibition, potentially in combination with AR-directed and DDR therapies.
Asunto(s)
Reparación del ADN , Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Factores de Transcripción p300-CBP , Masculino , Humanos , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Factores de Transcripción p300-CBP/genética , Línea Celular Tumoral , Animales , Regulación Neoplásica de la Expresión Génica , Ratones , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Daño del ADN , Proteína p300 Asociada a E1ARESUMEN
Prostate cancer (PCa) is the second leading cause of cancer death for men in the United States. While organ-confined disease has reasonable expectation of cure, metastatic PCa is universally fatal upon recurrence during hormone therapy, a stage termed castration-resistant prostate cancer (CRPC). Until such time as molecularly defined subtypes can be identified and targeted using precision medicine, it is necessary to investigate new therapies that may apply to the CRPC population as a whole. The administration of ascorbate, more commonly known as ascorbic acid or Vitamin C, has proved lethal to and highly selective for a variety of cancer cell types. There are several mechanisms currently under investigation to explain how ascorbate exerts anti-cancer effects. A simplified model depicts ascorbate as a pro-drug for reactive oxygen species (ROS), which accumulate intracellularly and generate DNA damage. It was therefore hypothesized that poly(ADP-ribose) polymerase (PARP) inhibitors, by inhibiting DNA damage repair, would augment the toxicity of ascorbate. Results: Two distinct CRPC models were found to be sensitive to physiologically relevant doses of ascorbate. Moreover, additional studies indicate that ascorbate inhibits CRPC growth in vitro via multiple mechanisms including disruption of cellular energy dynamics and accumulation of DNA damage. Combination studies were performed in CRPC models with ascorbate in conjunction with escalating doses of three different PARP inhibitors (niraparib, olaparib, and talazoparib). The addition of ascorbate augmented the toxicity of all three PARP inhibitors and proved synergistic with olaparib in both CRPC models. Finally, the combination of olaparib and ascorbate was tested in vivo in both castrated and non-castrated models. In both cohorts, the combination treatment significantly delayed tumor growth compared to monotherapy or untreated control. Conclusions: These data indicate that pharmacological ascorbate is an effective monotherapy at physiological concentrations and kills CRPC cells. Ascorbate-induced tumor cell death was associated with disruption of cellular energy dynamics and accumulation of DNA damage. The addition of PARP inhibition increased the extent of DNA damage and proved effective at slowing CRPC growth both in vitro and in vivo. These findings nominate ascorbate and PARPi as a novel therapeutic regimen that has the potential to improve CRPC patient outcomes.
RESUMEN
PURPOSE: This is an update to a previously published report characterizing the impact that efforts to control the COVID-19 pandemic have had on the normal course of cancer-related encounters. METHODS: Data were analyzed from 22 US health care organizations (members of the TriNetX global network) having relevant, up-to-date encounter data. Although the original study compared encounter data pre-COVID-19 (January-April 2019) with the corresponding months in 2020, this update considers data through April 2021. As before, cohorts were generated for all neoplasm patients (malignant, benign, in situ, and of unspecified behavior), all new incidence neoplasm patients, exclusively malignant neoplasm patients, and new incidence malignant neoplasm patients. Data on the initial cancer stage were available for calendar year 2020 from about one third of the study's organizations. RESULTS: Although COVID-19 cases fluctuated through 2021, newly diagnosed cancers closely paralleled the prepandemic base year 2019. Similarly, screening for breast, colorectal, and cervical cancers quickly recovered beginning in May 2020 to prepandemic numbers. Preliminary data for the initial cancer stage showed no significant difference (P > .10) in distribution for breast or colon cancers between 2019 and 2020. CONCLUSION: Although the number of COVID-19 cases fluctuated, the steep declines observed during March and April 2020 in screening for breast and colon cancer and patients with newly diagnosed cancer did not continue through the rest of 2020 and into April 2021. Screening and new incidence cancer numbers quickly rose compared with prepandemic levels. The concern that more patients with advanced-stage cancer would be seen in the months following the drastic dips of March-April 2020 was not realized as the major disruption to normal cancer care was limited to these 2 months.
Asunto(s)
COVID-19 , Neoplasias , COVID-19/epidemiología , Humanos , Incidencia , Neoplasias/diagnóstico , Neoplasias/epidemiología , Neoplasias/terapia , Pandemias , SARS-CoV-2RESUMEN
BACKGROUND: Cancer centers are expected to engage communities and reduce the burden of cancer in their catchment areas. However, the extent to which cancer centers adequately reach the entire US population is unknown. METHODS: We surveyed all members of the Association of American Cancer Institutes (N = 102 cancer centers) to document and map each cancer center's primary catchment area. Catchment area descriptions were aggregated to the county level. Catchment area coverage scores were calculated for each county and choropleths generated representing coverage across the US. Similar analyses were used to overlay US population density, cancer incidence, and cancer-related mortality compared with each county's cancer center catchment area coverage. RESULTS: Roughly 85% of US counties were included in at least one cancer center's primary catchment area. However, 15% of US counties, or roughly 25 million Americans, do not reside in a catchment area. When catchment area coverage was integrated with population density, cancer incidence, and cancer-related mortality metrics, geographical trends in both over- and undercoverage were apparent. CONCLUSIONS: Geographic gaps in cancer center catchment area coverage exist and may be propagating cancer disparities. Efforts to ensure coverage to all Americans should be a priority of cancer center leadership. IMPACT: This is the first known geographic analysis and interpretation of the primary catchment areas of all US-based cancer centers and identifies key geographic gaps important to target for disparities reduction. See related commentary by Lieberman-Cribbin and Taioli, p. 949.
Asunto(s)
Neoplasias , Salud Pública , Áreas de Influencia de Salud , Humanos , Neoplasias/epidemiología , Neoplasias/prevención & control , Proyectos de Investigación , Encuestas y Cuestionarios , Estados Unidos/epidemiologíaRESUMEN
Despite increasingly stringent requirements from regulatory agencies, clinical trials often fail to recruit study populations representative of real-world demographics and disease prevalence and are often skewed away from racial/ethnic minorities. Consequently, data produced by such trials can result in treatment guidelines and outcome expectations that do not apply to racial/ethnic minorities, further widening health disparities. In this study, we describe a new tool, the TriNetX Diversity Lens ("Diversity Lens"), which augments the existing electronic health record querying functionality of TriNetX and allows clinical trial sponsors to rapidly evaluate the potential impact of inclusion and exclusion criteria on the eligibility rates of different racial and ethnic groups. We describe the development of Diversity Lens in collaboration with public and private stakeholders. Additionally, we feature examples of how Diversity Lens can bring to the surface insights into existing health disparities and prospectively explore the impact of study criteria on the eligibility of racial/ethnic minorities.
Asunto(s)
Equidad en Salud , Asociación entre el Sector Público-Privado , Humanos , Registros Electrónicos de Salud , Etnicidad , Grupos Minoritarios , Grupos Raciales , Ensayos Clínicos como AsuntoRESUMEN
The tumor suppressor gene TP53 is the most frequently mutated gene in numerous cancer types, including prostate cancer (PCa). Specifically, missense mutations in TP53 are selectively enriched in PCa, and cluster to particular "hot spots" in the p53 DNA binding domain with mutation at the R273 residue occurring most frequently. While this residue is similarly mutated to R273C-p53 or R273H-p53 in all cancer types examined, in PCa selective enrichment of R273C-p53 is observed. Importantly, examination of clinical datasets indicated that TP53 heterozygosity can either be maintained or loss of heterozygosity (LOH) occurs. Thus, to mimic tumor-associated mutant p53, R273C-p53 and R273H-p53 isogenic PCa models were developed in the presence or absence of wild-type p53. In the absence of wild-type p53, both R273C-p53 and R273H-p53 exhibited similar loss of DNA binding, transcriptional profiles, and loss of canonical tumor suppressor functions associated with wild-type p53. In the presence of wild-type p53 expression, both R273C-p53 and R273H-p53 supported canonical p53 target gene expression yet elicited distinct cistromic and transcriptional profiles when compared to each other. Moreover, heterozygous modeling of R273C-p53 or R273H-p53 expression resulted in distinct phenotypic outcomes in vitro and in vivo. Thus, mutant p53 acts in a context-dependent manner to elicit pro-tumorigenic transcriptional profiles, providing critical insight into mutant p53-mediated prostate cancer progression.
Asunto(s)
Carcinogénesis/genética , Neoplasias de la Próstata/genética , Proteína p53 Supresora de Tumor/metabolismo , Humanos , Masculino , FenotipoRESUMEN
PURPOSE: DNA-dependent protein kinase catalytic subunit (DNA-PKcs, herein referred as DNA-PK) is a multifunctional kinase of high cancer relevance. DNA-PK is deregulated in multiple tumor types, including prostate cancer, and is associated with poor outcomes. DNA-PK was previously nominated as a therapeutic target and DNA-PK inhibitors are currently undergoing clinical investigation. Although DNA-PK is well studied in DNA repair and transcriptional regulation, much remains to be understood about the way by which DNA-PK drives aggressive disease phenotypes. EXPERIMENTAL DESIGN: Here, unbiased proteomic and metabolomic approaches in clinically relevant tumor models uncovered a novel role of DNA-PK in metabolic regulation of cancer progression. DNA-PK regulation of metabolism was interrogated using pharmacologic and genetic perturbation using in vitro cell models, in vivo xenografts, and ex vivo in patient-derived explants (PDE). RESULTS: Key findings reveal: (i) the first-in-field DNA-PK protein interactome; (ii) numerous DNA-PK novel partners involved in glycolysis; (iii) DNA-PK interacts with, phosphorylates (in vitro), and increases the enzymatic activity of glycolytic enzymes ALDOA and PKM2; (iv) DNA-PK drives synthesis of glucose-derived pyruvate and lactate; (v) DNA-PK regulates glycolysis in vitro, in vivo, and ex vivo; and (vi) combination of DNA-PK inhibitor with glycolytic inhibitor 2-deoxyglucose leads to additive anti-proliferative effects in aggressive disease. CONCLUSIONS: Findings herein unveil novel DNA-PK partners, substrates, and function in prostate cancer. DNA-PK impacts glycolysis through direct interaction with glycolytic enzymes and modulation of enzymatic activity. These events support energy production that may contribute to generation and/or maintenance of DNA-PK-mediated aggressive disease phenotypes.
Asunto(s)
Proteína Quinasa Activada por ADN , Neoplasias de la Próstata Resistentes a la Castración , ADN , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Glucólisis , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Proteómica , Piruvato Quinasa/metabolismoRESUMEN
BACKGROUND: The frequency of coinfections and their association with outcomes have not been adequately studied among patients with cancer and coronavirus disease 2019 (COVID-19), a high-risk group for coinfection. METHODS: We included adult (≥18 years) patients with active or prior hematologic or invasive solid malignancies and laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) infection, using data from the COVID-19 and Cancer Consortium (CCC19, NCT04354701). We captured coinfections withinâ ±2 weeks from diagnosis of COVID-19, identified factors cross-sectionally associated with risk of coinfection, and quantified the association of coinfections with 30-day mortality. RESULTS: Among 8765 patients (hospitalized or not; median age, 65 years; 47.4% male), 16.6% developed coinfections: 12.1% bacterial, 2.1% viral, 0.9% fungal. An additional 6.4% only had clinical diagnosis of a coinfection. The adjusted risk of any coinfection was positively associated with age >50 years, male sex, cardiovascular, pulmonary, and renal comorbidities, diabetes, hematologic malignancy, multiple malignancies, Eastern Cooperative Oncology Group Performance Status, progressing cancer, recent cytotoxic chemotherapy, and baseline corticosteroids; the adjusted risk of superinfection was positively associated with tocilizumab administration. Among hospitalized patients, high neutrophil count and C-reactive protein were positively associated with bacterial coinfection risk, and high or low neutrophil count with fungal coinfection risk. Adjusted mortality rates were significantly higher among patients with bacterial (odds ratio [OR], 1.61; 95% CI, 1.33-1.95) and fungal (OR, 2.20; 95% CI, 1.28-3.76) coinfections. CONCLUSIONS: Viral and fungal coinfections are infrequent among patients with cancer and COVID-19, with the latter associated with very high mortality rates. Clinical and laboratory parameters can be used to guide early empiric antimicrobial therapy, which may improve clinical outcomes.
RESUMEN
PURPOSE: An important obstacle to cancer research is that nearly all academic cancer centers maintain substantial collections of highly duplicative, poorly quality-assured, nonintercommunicating, difficult-to-access data repositories. It is inherently clear that this state of affairs increases costs and reduces quality and productivity of both research and nonresearch activities. We hypothesized that designing and implementing a multipurpose cancer information system on the basis of the Biomedical Research Integrated Domain (BRIDG) model developed by the National Cancer Institute and its collaborators might lessen the duplication of effort inherent in capturing, quality-assuring, and accessing data located in multiple single-purpose systems, and thereby increases productivity while reducing costs. METHODS: We designed and implemented a core data structure on the basis of the BRIDG model and incorporated multiple entities, attributes, and functionalities to support the multipurpose functionality of the system. We used the resultant model as a foundation upon which to design and implement modules for importing preexisting data, capturing data prospectively, quality-assuring data, exporting data to analytic files, and analyzing the quality-assured data to support multiple functionalities simultaneously. To our knowledge, our system, which we refer to as the Cancer Informatics Data System, is the first multipurpose, BRIDG-harmonized cancer research information system implemented at an academic cancer center. RESULTS: We describe the BRIDG-harmonized system that simultaneously supports patient care, teaching, research, clinical decision making, administrative decision making, mandated volume-and-outcomes reporting, clinical quality assurance, data quality assurance, and many other functionalities. CONCLUSION: Implementation of a highly quality-assured, multipurpose cancer information system on the basis of the BRIDG model at an academic center is feasible and can increase access to accurate data to support research integrity and productivity as well as nonresearch activities.
Asunto(s)
Investigación Biomédica , Trasplante de Células Madre Hematopoyéticas , Humanos , Sistemas de Información , National Cancer Institute (U.S.) , Estados UnidosRESUMEN
Loss of the retinoblastoma (RB) tumor suppressor protein is a critical step in reprogramming biological networks that drive cancer progression, although mechanistic insight has been largely limited to the impact of RB loss on cell-cycle regulation. Here, isogenic modeling of RB loss identified disease stage-specific rewiring of E2F1 function, providing the first-in-field mapping of the E2F1 cistrome and transcriptome after RB loss across disease progression. Biochemical and functional assessment using both in vitro and in vivo models identified an unexpected, prominent role for E2F1 in regulation of redox metabolism after RB loss, driving an increase in the synthesis of the antioxidant glutathione, specific to advanced disease. These E2F1-dependent events resulted in protection from reactive oxygen species in response to therapeutic intervention. On balance, these findings reveal novel pathways through which RB loss promotes cancer progression and highlight potentially new nodes of intervention for treating RB-deficient cancers. SIGNIFICANCE: This study identifies stage-specific consequences of RB loss across cancer progression that have a direct impact on tumor response to clinically utilized therapeutics. The study herein is the first to investigate the effect of RB loss on global metabolic regulation and link RB/E2F1 to redox control in multiple advanced diseases.This article is highlighted in the In This Issue feature, p. 2113.
Asunto(s)
Factor de Transcripción E2F1/genética , Neoplasias de la Retina/genética , Proteína de Retinoblastoma/genética , Retinoblastoma/genética , Animales , Línea Celular Tumoral , Humanos , Ratones , Metástasis de la Neoplasia , Neoplasias de la Retina/patología , Retinoblastoma/secundario , Transducción de Señal , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Resistance to androgen receptor (AR) blockade in castration-resistant prostate cancer (CRPC) is associated with sustained AR signaling, including through alternative splicing of AR (AR-SV). Inhibitors of transcriptional coactivators that regulate AR activity, including the paralog histone acetyltransferase proteins p300 and CBP, are attractive therapeutic targets for lethal prostate cancer. Herein, we validate targeting p300/CBP as a therapeutic strategy for lethal prostate cancer and describe CCS1477, a novel small-molecule inhibitor of the p300/CBP conserved bromodomain. We show that CCS1477 inhibits cell proliferation in prostate cancer cell lines and decreases AR- and C-MYC-regulated gene expression. In AR-SV-driven models, CCS1477 has antitumor activity, regulating AR and C-MYC signaling. Early clinical studies suggest that CCS1477 modulates KLK3 blood levels and regulates CRPC biopsy biomarker expression. Overall, CCS1477 shows promise for the treatment of patients with advanced prostate cancer. SIGNIFICANCE: Treating CRPC remains challenging due to persistent AR signaling. Inhibiting transcriptional AR coactivators is an attractive therapeutic strategy. CCS1477, an inhibitor of p300/CBP, inhibits growth and AR activity in CRPC models, and can affect metastatic CRPC target expression in serial clinical biopsies.See related commentary by Rasool et al., p. 1011.This article is highlighted in the In This Issue feature, p. 995.
Asunto(s)
Antagonistas de Receptores Androgénicos/uso terapéutico , Imidazoles/uso terapéutico , Oxazoles/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Antagonistas de Receptores Androgénicos/farmacología , Animales , Línea Celular Tumoral/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Imidazoles/farmacología , Masculino , Ratones , Oxazoles/farmacología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
PURPOSE: While there are studies under way to characterize the direct effects of the COVID-19 pandemic on the care of patients with cancer, there have been few quantitative reports of the impact that efforts to control the pandemic have had on the normal course of cancer diagnosis and treatment encounters. METHODS: We used the TriNetX platform to analyze 20 health care institutions that have relevant, up-to-date encounter data. Using this COVID and Cancer Research Network (CCRN), we compared cancer cohorts identified by querying encounter data pre-COVID (January 2019-April 2019) and current (January 2020-April 2020). Cohorts were generated for all patients with neoplasms (malignant, benign, in situ, and of unspecified behavior), with new incidence neoplasms (first encounter), with exclusively malignant neoplasms, and with new incidence malignant neoplasms. Data from a UK institution were similarly analyzed. Additional analyses were performed on patients with selected cancers, as well as on those having had cancer screening. RESULTS: Clear trends were identified that suggest a significant decline in all current cohorts explored, with April 2020 displaying the largest decrease in the number of patients with cancer having encounters. Of the cancer types analyzed, lung, colorectal, and hematologic cancer cohorts exhibited smaller decreases in size in April 2020 versus 2019 (-39.1%, -39.9%, -39.1%, respectively) compared with cohort size decreases for breast cancer, prostate cancer, and melanoma (-47.7%, -49.1%, -51.8%, respectively). In addition, cancer screenings declined drastically, with breast cancer screenings dropping by -89.2% and colorectal cancer screenings by -84.5%. CONCLUSION: Trends seen in the CCRN clearly suggest a significant decrease in all cancer-related patient encounters as a result of the pandemic. The steep decreases in cancer screening and patients with a new incidence of cancer suggest the possibility of a future increase in patients with later-stage cancer being seen initially as well as an increased demand for cancer screening procedures as delayed tests are rescheduled.