Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 72(5): 875-887.e9, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30318444

RESUMEN

It is unknown how the dynamic binding of transcription factors (TFs) is molecularly linked to chromatin remodeling and transcription. Using single-molecule tracking (SMT), we show that the chromatin remodeler RSC speeds up the search process of the TF Ace1p for its response elements (REs) at the CUP1 promoter. We quantified smFISH mRNA data using a gene bursting model and demonstrated that RSC regulates transcription bursts of CUP1 only by modulating TF occupancy but does not affect initiation and elongation rates. We show by SMT that RSC binds to activated promoters transiently, and based on MNase-seq data, that RSC does not affect the nucleosomal occupancy at CUP1. Therefore, transient binding of Ace1p and rapid bursts of transcription at CUP1 may be dependent on short repetitive cycles of nucleosome mobilization. This type of regulation reduces the transcriptional noise and ensures a homogeneous response of the cell population to heavy metal stress.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Metalotioneína/genética , ARN Mensajero/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , Metalotioneína/metabolismo , Modelos Genéticos , Nucleosomas/química , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Imagen Individual de Molécula/métodos , Factores de Transcripción/metabolismo , Transcripción Genética
2.
Nature ; 516(7530): 272-5, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25252976

RESUMEN

In eukaryotic cells, post-translational histone modifications have an important role in gene regulation. Starting with early work on histone acetylation, a variety of residue-specific modifications have now been linked to RNA polymerase II (RNAP2) activity, but it remains unclear if these markers are active regulators of transcription or just passive byproducts. This is because studies have traditionally relied on fixed cell populations, meaning temporal resolution is limited to minutes at best, and correlated factors may not actually be present in the same cell at the same time. Complementary approaches are therefore needed to probe the dynamic interplay of histone modifications and RNAP2 with higher temporal resolution in single living cells. Here we address this problem by developing a system to track residue-specific histone modifications and RNAP2 phosphorylation in living cells by fluorescence microscopy. This increases temporal resolution to the tens-of-seconds range. Our single-cell analysis reveals histone H3 lysine-27 acetylation at a gene locus can alter downstream transcription kinetics by as much as 50%, affecting two temporally separate events. First acetylation enhances the search kinetics of transcriptional activators, and later the acetylation accelerates the transition of RNAP2 from initiation to elongation. Signatures of the latter can be found genome-wide using chromatin immunoprecipitation followed by sequencing. We argue that this regulation leads to a robust and potentially tunable transcriptional response.


Asunto(s)
Histonas/química , Histonas/metabolismo , ARN Polimerasa II/metabolismo , Análisis de la Célula Individual , Transcripción Genética , Acetilación , Animales , Línea Celular Tumoral , Supervivencia Celular , Inmunoprecipitación de Cromatina , Activación Enzimática , Genoma/genética , Cinética , Lisina/metabolismo , Ratones , Microscopía Fluorescente , Fosforilación , Factores de Tiempo , Elongación de la Transcripción Genética , Iniciación de la Transcripción Genética
3.
Mol Cell ; 43(2): 242-52, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21777813

RESUMEN

Yeast prions are self-perpetuating, QN-rich amyloids that control heritable traits and serve as a model for mammalian amyloidoses. De novo prion formation by overproduced prion protein is facilitated by other aggregated QN-rich protein(s) and is influenced by alterations of protein homeostasis. Here we explore the mechanism by which the Las17-binding protein Lsb2 (Pin3) promotes conversion of the translation termination factor Sup35 into its prion form, [PSI(+)]. We show that Lsb2 localizes with some Sup35 aggregates and that Lsb2 is a short-lived protein whose levels are controlled via the ubiquitin-proteasome system and are dramatically increased by stress. Loss of Lsb2 decreases stability of [PSI(+)] after brief heat shock. Mutations interfering with Lsb2 ubiquitination increase prion induction, while a mutation eliminating association of Lsb2 with the actin cytoskeleton blocks its aggregation and prion-inducing ability. These findings directly implicate the UPS and actin cytoskeleton in regulating prions via a stress-inducible QN-rich protein.


Asunto(s)
Actinas/metabolismo , Proteínas Portadoras/genética , Citoesqueleto/metabolismo , Priones/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinación/fisiología , Proteínas Portadoras/metabolismo , Mutación , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Priones/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico
4.
Nature ; 484(7393): 251-5, 2012 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-22498630

RESUMEN

Dynamic access to genetic information is central to organismal development and environmental response. Consequently, genomic processes must be regulated by mechanisms that alter genome function relatively rapidly. Conventional chromatin immunoprecipitation (ChIP) experiments measure transcription factor occupancy, but give no indication of kinetics and are poor predictors of transcription factor function at a given locus. To measure transcription-factor-binding dynamics across the genome, we performed competition ChIP (refs 6, 7) with a sequence-specific Saccharomyces cerevisiae transcription factor, Rap1 (ref. 8). Rap1-binding dynamics and Rap1 occupancy were only weakly correlated (R(2) = 0.14), but binding dynamics were more strongly linked to function than occupancy. Long Rap1 residence was coupled to transcriptional activation, whereas fast binding turnover, which we refer to as 'treadmilling', was linked to low transcriptional output. Thus, DNA-binding events that seem identical by conventional ChIP may have different underlying modes of interaction that lead to opposing functional outcomes. We propose that transcription factor binding turnover is a major point of regulation in determining the functional consequences of transcription factor binding, and is mediated mainly by control of competition between transcription factors and nucleosomes. Our model predicts a clutch-like mechanism that rapidly engages a treadmilling transcription factor into a stable binding state, or vice versa, to modulate transcription factor function.


Asunto(s)
ADN de Hongos/metabolismo , Genoma Fúngico , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Bases , Sitios de Unión , Unión Competitiva , Inmunoprecipitación de Cromatina , ADN de Hongos/genética , Regulación Fúngica de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Unión Proteica , ARN Polimerasa II/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Saccharomyces cerevisiae/clasificación , Complejo Shelterina , Factores de Tiempo
5.
Nucleic Acids Res ; 44(21): e160, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27566148

RESUMEN

In vivo single molecule tracking has recently developed into a powerful technique for measuring and understanding the transient interactions of transcription factors (TF) with their chromatin response elements. However, this method still lacks a solid foundation for distinguishing between specific and non-specific interactions. To address this issue, we took advantage of the power of molecular genetics of yeast. Yeast TF Ace1p has only five specific sites in the genome and thus serves as a benchmark to distinguish specific from non-specific binding. Here, we show that the estimated residence time of the short-residence molecules is essentially the same for Hht1p, Ace1p and Hsf1p, equaling 0.12-0.32 s. These three DNA-binding proteins are very different in their structure, function and intracellular concentration. This suggests that (i) short-residence molecules are bound to DNA non-specifically, and (ii) that non-specific binding shares common characteristics between vastly different DNA-bound proteins and thus may have a common underlying mechanism. We develop new and robust procedure for evaluation of adverse effects of labeling, and new quantitative analysis procedures that significantly improve residence time measurements by accounting for fluorophore blinking. Our results provide a framework for the reliable performance and analysis of single molecule TF experiments in yeast.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/metabolismo , Imagen Molecular/métodos , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/análisis , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Histonas/genética , Histonas/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo , Factores de Transcripción/genética
6.
Q Rev Biophys ; 48(3): 323-87, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26314367

RESUMEN

Fluorescence recovery after photobleaching (FRAP) is a versatile tool for determining diffusion and interaction/binding properties in biological and material sciences. An understanding of the mechanisms controlling the diffusion requires a deep understanding of structure-interaction-diffusion relationships. In cell biology, for instance, this applies to the movement of proteins and lipids in the plasma membrane, cytoplasm and nucleus. In industrial applications related to pharmaceutics, foods, textiles, hygiene products and cosmetics, the diffusion of solutes and solvent molecules contributes strongly to the properties and functionality of the final product. All these systems are heterogeneous, and accurate quantification of the mass transport processes at the local level is therefore essential to the understanding of the properties of soft (bio)materials. FRAP is a commonly used fluorescence microscopy-based technique to determine local molecular transport at the micrometer scale. A brief high-intensity laser pulse is locally applied to the sample, causing substantial photobleaching of the fluorescent molecules within the illuminated area. This causes a local concentration gradient of fluorescent molecules, leading to diffusional influx of intact fluorophores from the local surroundings into the bleached area. Quantitative information on the molecular transport can be extracted from the time evolution of the fluorescence recovery in the bleached area using a suitable model. A multitude of FRAP models has been developed over the years, each based on specific assumptions. This makes it challenging for the non-specialist to decide which model is best suited for a particular application. Furthermore, there are many subtleties in performing accurate FRAP experiments. For these reasons, this review aims to provide an extensive tutorial covering the essential theoretical and practical aspects so as to enable accurate quantitative FRAP experiments for molecular transport measurements in soft (bio)materials.


Asunto(s)
Fotoblanqueo , Fluorescencia
7.
Mol Cell ; 35(6): 741-53, 2009 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-19782025

RESUMEN

All aspects of transcription and its regulation involve dynamic events. The basal transcription machinery and regulatory components are dynamically recruited to their target genes, and dynamic interactions of transcription factors with chromatin--and with each other--play a key role in RNA polymerase assembly, initiation, and elongation. These short-term binding dynamics of transcription factors are superimposed by long-term cyclical behavior of chromatin opening and transcription factor-binding events. Its dynamic nature is not only a fundamental property of the transcription machinery, but it is emerging as an important modulator of physiological processes, particularly in differentiation and development.


Asunto(s)
Núcleo Celular/metabolismo , ARN/biosíntesis , Transcripción Genética , Animales , Sitios de Unión , Núcleo Celular/enzimología , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación de la Expresión Génica , Genómica/métodos , Humanos , Cinética , Complejos Multiproteicos , Factores de Transcripción/metabolismo
8.
Mol Cell ; 35(5): 642-56, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19748358

RESUMEN

Structural changes in specific chromatin domains are essential to the orderly progression of numerous nuclear processes, including transcription. We report that the nuclear protein NSBP1 (HMGN5), a recently discovered member of the HMGN nucleosome-binding protein family, is specifically targeted by its C-terminal domain to nucleosomes in euchromatin. We find that the interaction of NSBP1 with nucleosomes alters the compaction of cellular chromatin and that in living cells, NSBP1 interacts with linker histones. We demonstrate that the negatively charged C-terminal domain of NSBP1 interacts with the positively charged C-terminal domain of H5 and that NSBP1 counteracts the linker histone-mediated compaction of a nucleosomal array. Dysregulation of the cellular levels of NSBP1 alters the transcription level of numerous genes. We suggest that mouse NSBP1 is an architectural protein that binds preferentially to euchromatin and modulates the fidelity of the cellular transcription profile by counteracting the chromatin-condensing activity of linker histones.


Asunto(s)
Ensamble y Desensamble de Cromatina , Eucromatina/metabolismo , Proteínas HMGN/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Transactivadores/metabolismo , Transcripción Genética , Animales , Sitios de Unión , Línea Celular Transformada , Eucromatina/química , Perfilación de la Expresión Génica , Proteínas HMGN/química , Proteínas HMGN/genética , Histonas/química , Lisina , Metilación , Ratones , Microscopía Confocal , Modelos Moleculares , Células 3T3 NIH , Conformación de Ácido Nucleico , Conformación Proteica , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Transactivadores/química , Transactivadores/genética , Transfección
9.
Crit Rev Biochem Mol Biol ; 48(5): 492-514, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24025032

RESUMEN

Transcription factors (TFs) interact dynamically in vivo with chromatin binding sites. Here we summarize and compare the four different techniques that are currently used to measure these kinetics in live cells, namely fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), single molecule tracking (SMT) and competition ChIP (CC). We highlight the principles underlying each of these approaches as well as their advantages and disadvantages. A comparison of data from each of these techniques raises an important question: do measured transcription kinetics reflect biologically functional interactions at specific sites (i.e. working TFs) or do they reflect non-specific interactions (i.e. playing TFs)? To help resolve this dilemma we discuss five key unresolved biological questions related to the functionality of transient and prolonged binding events at both specific promoter response elements as well as non-specific sites. In support of functionality, we review data suggesting that TF residence times are tightly regulated, and that this regulation modulates transcriptional output at single genes. We argue that in addition to this site-specific regulatory role, TF residence times also determine the fraction of promoter targets occupied within a cell thereby impacting the functional status of cellular gene networks. Thus, TF residence times are key parameters that could influence transcription in multiple ways.


Asunto(s)
Factores de Transcripción/metabolismo , Animales , Humanos , Cinética , Regiones Promotoras Genéticas/genética , Unión Proteica
10.
J Biol Chem ; 289(40): 27625-39, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25143386

RESUMEN

Yeast prions are self-propagating amyloid-like aggregates of Q/N-rich protein that confer heritable traits and provide a model of mammalian amyloidoses. [PSI(+)] is a prion isoform of the translation termination factor Sup35. Propagation of [PSI(+)] during cell division under normal conditions and during the recovery from damaging environmental stress depends on cellular chaperones and is influenced by ubiquitin proteolysis and the actin cytoskeleton. The paralogous yeast proteins Lsb1 and Lsb2 bind the actin assembly protein Las17 (a yeast homolog of human Wiskott-Aldrich syndrome protein) and participate in the endocytic pathway. Lsb2 was shown to modulate maintenance of [PSI(+)] during and after heat shock. Here, we demonstrate that Lsb1 also regulates maintenance of the Sup35 prion during and after heat shock. These data point to the involvement of Lsb proteins in the partitioning of protein aggregates in stressed cells. Lsb1 abundance and cycling between actin patches, endoplasmic reticulum, and cytosol is regulated by the Guided Entry of Tail-anchored proteins pathway and Rsp5-dependent ubiquitination. Heat shock-induced proteolytic processing of Lsb1 is crucial for prion maintenance during stress. Our findings identify Lsb1 as another component of a tightly regulated pathway controlling protein aggregation in changing environments.


Asunto(s)
Actinas/metabolismo , Proteínas Portadoras/metabolismo , Respuesta al Choque Térmico , Factores de Terminación de Péptidos/metabolismo , Priones/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas Portadoras/genética , Citoesqueleto/genética , Citoesqueleto/metabolismo , Factores de Terminación de Péptidos/genética , Priones/genética , Proteolisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Cell Mol Life Sci ; 71(9): 1741-59, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24026398

RESUMEN

Chromosomally separated, co-expressed genes can be in spatial proximity, but there is still debate about how this nuclear organization is achieved. Proposed mechanisms include global genome organization, preferential positioning of chromosome territories, or gene-gene sharing of various nuclear bodies. To investigate this question, we selected a set of genes that were co-expressed upon differentiation of human multipotent stem cells. We applied a novel multi-dimensional analysis procedure which revealed that prior to gene expression, the relative position of these genes was conserved in nuclei. Upon stem cell differentiation and concomitant gene expression, we found that co-expressed genes were closer together. In addition, we found that genes in the same 1-µm-diameter neighborhood associated with either the same splicing speckle or to a lesser extent with the same transcription factory. Dispersal of speckles by overexpression of the serine-arginine (SR) protein kinase cdc2-like kinase Clk2 led to a significant drop in the number of genes in shared neighborhoods. We demonstrate quantitatively that the frequencies of speckle and factory sharing can be explained by assuming stochastic selection of a nuclear body within a restricted sub-volume defined by the original global gene positioning present prior to gene expression. We conclude that the spatial organization of these genes is a two-step process in which transcription-induced association with nuclear bodies enhances and refines a pre-existing global organization.


Asunto(s)
Proteínas Nucleares/metabolismo , ARN Polimerasa II/metabolismo , Ribonucleoproteínas/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Cromosomas/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Células HEK293 , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , ARN Polimerasa II/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Ribonucleoproteínas/genética , Factores de Empalme Serina-Arginina , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo
12.
EMBO J ; 29(7): 1225-34, 2010 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-20224551

RESUMEN

The linker histone H1 has a fundamental role in DNA compaction. Although models for H1 binding generally involve the H1 C-terminal tail and sites S1 and S2 within the H1 globular domain, there is debate about the importance of these binding regions and almost nothing is known about how they work together. Using a novel fluorescence recovery after photobleaching (FRAP) procedure, we have measured the affinities of these regions individually, in pairs, and in the full molecule to demonstrate for the first time that binding among several combinations is cooperative in live cells. Our analysis reveals two preferred H1 binding pathways and we find evidence for a novel conformational change required by both. These results paint a complex, highly dynamic picture of H1-chromatin binding, with a significant fraction of H1 molecules only partially bound in metastable states that can be readily competed against. We anticipate the methods we have developed here will be broadly applicable, particularly for deciphering the binding kinetics of other nuclear proteins that, similar to H1, interact with and modify chromatin.


Asunto(s)
Cromatina/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Histonas/química , Histonas/metabolismo , Animales , Células 3T3 BALB , Línea Celular Tumoral , Histonas/análisis , Ratones , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Sales (Química)/metabolismo
13.
Nucleic Acids Res ; 40(15): e119, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22844090

RESUMEN

Live-cell measurement of protein binding to chromatin allows probing cellular biochemistry in physiological conditions, which are difficult to mimic in vitro. However, different studies have yielded widely discrepant predictions, and so it remains uncertain how to make the measurements accurately. To establish a benchmark we measured binding of the transcription factor p53 to chromatin by three approaches: fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS) and single-molecule tracking (SMT). Using new procedures to analyze the SMT data and to guide the FRAP and FCS analysis, we show how all three approaches yield similar estimates for both the fraction of p53 molecules bound to chromatin (only about 20%) and the residence time of these bound molecules (∼1.8 s). We also apply these procedures to mutants in p53 chromatin binding. Our results support the model that p53 locates specific sites by first binding at sequence-independent sites.


Asunto(s)
Cromatina/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Espectrometría de Fluorescencia , Línea Celular Tumoral , Humanos , Cinética , Proteína p53 Supresora de Tumor/metabolismo
14.
Nat Methods ; 7(12): 985-7, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21076419

RESUMEN

We developed an X-ray microscope using partially coherent object illumination instead of previously used quasi-incoherent illumination. The design permitted the incorporation of a cryogenic tilt stage, enabling tomography of frozen-hydrated, intact adherent cells. We obtained three-dimensional reconstructions of mouse adenocarcinoma cells at ∼36-nm (Rayleigh) and ∼70-nm (Fourier ring correlation) resolution, which allowed us to visualize the double nuclear membrane, nuclear pores, nuclear membrane channels, mitochondrial cristae and lysosomal inclusions.


Asunto(s)
Adenocarcinoma/ultraestructura , Microscopía/métodos , Orgánulos/ultraestructura , Animales , Retículo Endoplásmico/ultraestructura , Luz , Lisosomas/ultraestructura , Ratones , Mitocondrias/ultraestructura , Modelos Estructurales , Membrana Nuclear/ultraestructura , Tomografía/métodos , Tomografía de Coherencia Óptica/métodos , Rayos X
15.
Biophys J ; 102(7): 1656-65, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22500766

RESUMEN

Fluorescence recovery after photobleaching (FRAP) is a widely used imaging technique for measuring the mobility of fluorescently tagged proteins in living cells. Although FRAP presumes that high-intensity illumination causes only irreversible photobleaching, reversible photoswitching of many fluorescent molecules, including GFP, can also occur. Here, we show that this photoswitching is likely to contaminate many FRAPs of GFP, and worse, the size of its contribution can be up to 60% under different experimental conditions, making it difficult to compare FRAPs from different studies. We develop a procedure to correct FRAPs for photoswitching and apply it to FRAPs of the GFP-tagged histone H2B, which, depending on the precise photobleaching conditions exhibits apparent fast components ranging from 9-36% before correction and ∼1% after correction. We demonstrate how this ∼1% fast component of H2B-GFP can be used as a benchmark both to estimate the role of photoswitching in previous FRAP studies of TATA binding proteins (TBP) and also as a tool to minimize the contribution of photoswitching to tolerable levels in future FRAP experiments. In sum, we show how the impact of photoswitching on FRAP can be identified, minimized, and corrected.


Asunto(s)
Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Proteínas Fluorescentes Verdes/química , Artefactos , Histonas , Modelos Teóricos , Fotoblanqueo , Proteína de Unión a TATA-Box/química
16.
J Struct Biol ; 177(2): 179-92, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22155291

RESUMEN

We provide a catalog of 3D cryo soft X-ray tomography (cryo-SXT) images obtained from ∼6 to 12µm thick mouse adenocarcinoma cells. Included are multiple representative images of nuclei, nucleoli, nuclear membrane, nuclear membrane channels, mitochondria, lysosomes, endoplasmic reticulum, filaments and plasma membrane, plus three structures not previously described by cryo-SXT, namely Golgi, microvilli and nuclear-membrane blebs. Sections from the 3D cryo-SXT tomograms for all the preceding structures closely resemble those seen by thin-section transmission electron microscopy (TEM). Some structures such as nuclear-membrane channels and nuclear-membrane blebs are more easily detected by cryo-SXT than TEM most likely due to their better contrast and cellular preservation in cryo-SXT combined with the ability to rapidly locate these structures within a full 3D image. We identify and discuss two current limitations in cryo-SXT: variability in image quality and difficulties in detecting weaker contrast structures such as chromatin and various nuclear bodies. Progress on these points is likely to come from the solution of several technical problems in image acquisition, plus the implementation of advanced cryo soft X-ray microscopy approaches such as phase contrast or optical sectioning.


Asunto(s)
Atlas como Asunto , Membrana Celular/ultraestructura , Modelos Biológicos , Orgánulos/ultraestructura , Tomografía por Rayos X/métodos , Animales , Estructuras del Núcleo Celular/ultraestructura , Criopreservación , Imagenología Tridimensional , Ratones , Reproducibilidad de los Resultados , Células Tumorales Cultivadas
17.
Chromosoma ; 120(6): 533-45, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22048163

RESUMEN

The assembly of the transcription machinery is a key step in gene activation, but even basic details of this process remain unclear. Here we discuss the apparent discrepancy between the classic sequential assembly model based mostly on biochemistry and an emerging dynamic assembly model based mostly on fluorescence microscopy. The former model favors a stable transcription complex with subunits that cooperatively assemble in order, whereas the latter model favors an unstable complex with subunits that may assemble more randomly. To confront this apparent discrepancy, we review the merits and drawbacks of the different experimental approaches and list potential biasing factors that could be responsible for the different interpretations of assembly. We then discuss how these biases might be overcome in the future with improved experiments or new techniques. Finally, we discuss how kinetic models for assembly may help resolve the ordered and stable vs. random and dynamic assembly debate.


Asunto(s)
Complejos Multiproteicos/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , ADN/genética , ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Humanos , Cinética , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Factores de Transcripción/química , Factores de Transcripción/genética
18.
J Cell Biol ; 177(6): 957-67, 2007 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-17576795

RESUMEN

According to the transcription factory model, localized transcription sites composed of immobilized polymerase molecules transcribe chromatin by reeling it through the transcription site and extruding it to form a surrounding domain of recently transcribed decondensed chromatin. Although transcription sites have been identified in various cells, surrounding domains of recently transcribed decondensed chromatin have not. We report evidence that transcription sites associated with a tandem gene array in mouse cells are indeed surrounded by or adjacent to a domain of decondensed chromatin composed of sequences from the gene array. Formation of this decondensed domain requires transcription and topoisomerase IIalpha activity. The decondensed domain is enriched for the trimethyl H3K36 mark that is associated with recently transcribed chromatin in yeast and several mammalian systems. Consistent with this, chromatin immunoprecipitation demonstrates a comparable enrichment of this mark in transcribed sequences at the tandem gene array. These results provide new support for the pol II factory model, in which an immobilized polymerase molecule extrudes decondensed, transcribed sequences into its surroundings.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Sitio de Iniciación de la Transcripción , ADN-Topoisomerasas de Tipo II/metabolismo , Modelos Genéticos , Transcripción Genética
20.
J Cell Biol ; 172(6): 823-34, 2006 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-16520385

RESUMEN

The repair of DNA double-strand breaks (DSBs) is facilitated by the phosphorylation of H2AX, which organizes DNA damage signaling and chromatin remodeling complexes in the vicinity of the lesion. The disruption of DNA integrity induces an alteration of chromatin architecture that has been proposed to activate the DNA damage transducing kinase ataxia telangiectasia mutated. However, little is known about the physical properties of damaged chromatin. In this study, we use a photoactivatable version of GFP-tagged histone H2B to examine the mobility and structure of chromatin containing DSBs in living cells. We find that chromatin containing DSBs exhibits limited mobility but undergoes an energy-dependent local expansion immediately after DNA damage. The localized expansion observed in real time corresponds to a 30-40% reduction in the density of chromatin fibers in the vicinity of DSBs, as measured by energy-filtering transmission electron microscopy. The observed opening of chromatin occurs independently of H2AX and ATM. We propose that localized adenosine triphosphate-dependent decondensation of chromatin at DSBs establishes an accessible subnuclear environment that facilitates DNA damage signaling and repair.


Asunto(s)
Adenosina Trifosfato/metabolismo , Cromatina/genética , Daño del ADN/genética , Reparación del ADN/genética , ADN/genética , Animales , Células Cultivadas , Cromatina/química , Cromatina/ultraestructura , Posicionamiento de Cromosoma/genética , ADN/ultraestructura , Metabolismo Energético/genética , Femenino , Fibroblastos , Proteínas Fluorescentes Verdes , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA