Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Infect Immun ; 88(11)2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-32839190

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is a leading diarrheagenic bacterial pathogen among travelers and children in resource-limited regions. Adherence to host intestinal cells mediated by ETEC fimbriae is believed to be a critical first step in ETEC pathogenesis. These fimbriae are categorized into related classes based on sequence similarity, with members of the class 5 fimbrial family being the best characterized. The eight related members of the ETEC class 5 fimbrial family are subdivided into three subclasses (5a, 5b, and 5c) that share similar structural arrangements, including a fimbrial tip adhesin. However, sequence variability among the class 5 adhesins may hinder the generation of cross-protective antibodies. To better understand functional epitopes of the class 5 adhesins and their ability to induce intraclass antibody responses, we produced 28 antiadhesin monoclonal antibodies (MAbs) to representative adhesins CfaE, CsbD, and CotD, respectively. We determined the MAb cross-reactivities, localized the epitopes, and measured functional activities as potency in inhibition of hemagglutination induced by class 5 fimbria-bearing ETEC. The MAbs' reactivities to a panel of class 5 adhesins in enzyme-linked immunosorbent assays (ELISAs) revealed several reactivity patterns, including individual adhesin specificity, intrasubclass specificity, intersubclass specificity, and class-wide cross-reactivity, suggesting that some conserved epitopes, including two conserved arginines, are shared by the class 5 adhesins. However, the cross-reactive MAbs had functional activities limited to strains expressing colonization factor antigen I (CFA/I), coli surface antigen 17 (CS17), or CS1, suggesting that the breadth of functional activities of the MAbs was more restricted than the repertoire of cross-reactivities measured by ELISA. The results imply that multivalent adhesin-based ETEC vaccines or prophylactics need more than one active component to reach broad protection.


Asunto(s)
Adhesinas de Escherichia coli/inmunología , Anticuerpos Monoclonales/inmunología , Reacciones Cruzadas/inmunología , Escherichia coli Enterotoxigénica/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Mapeo Epitopo , Femenino , Ratones , Ratones Endogámicos BALB C
2.
Infect Immun ; 88(11)2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-32839188

RESUMEN

Recent efforts to develop an enterotoxigenic Escherichia coli (ETEC) vaccine have focused on the antigenically conserved tip adhesins of colonization factors. We showed previously that intranasal immunization with dsc19CfaE, a soluble variant of the in cis donor strand-complemented tip adhesin of a colonization factor of the class 5 family (CFA/I) fimbria, is highly immunogenic and protects against oral challenge with CFA/I-positive (CFA/I+) ETEC strain H10407 in the Aotus nancymaae nonhuman primate. We also reported a cholera toxin (CT)-like chimera (called dsc19CfaE-CTA2/CTB) in which the CTA1 domain of CT was replaced by dsc19CfaE that was strongly immunogenic when administered intranasally or orogastrically in mice. Here, we evaluate the immunogenicity and protective efficacy (PE) of a refined and more stable chimera comprised of a pentameric B subunit of ETEC heat-labile toxin (LTB) in lieu of the CTB pentamer and a donor strand truncation (dsc14) of CfaE. The refined chimera, dsc14CfaE-sCTA2/LTB, was highly immunogenic in mice when administered intranasally or intradermally, eliciting serum and fecal antibody responses against CfaE and LTB, as well as strong hemagglutination inhibition titers, a surrogate for neutralization of intestinal adhesion mediated by CfaE. Moreover, the chimera was safe and highly immunogenic when administered intradermally to guinea pigs. In A. nancymaae, intradermal (i.d.) immunization with chimera plus single-mutant heat-labile toxin [LT(R192G)] elicited strong serum anti-CfaE and anti-LTB antibody responses and conferred significant reduction of diarrhea compared to phosphate-buffered saline (PBS) controls (PE = 84.1%; P < 0.02). These data support the further evaluation of dsc14CfaE-sCTA2/LTB as an ETEC vaccine in humans.


Asunto(s)
Adhesinas de Escherichia coli/inmunología , Toxina del Cólera/inmunología , Infecciones por Escherichia coli/inmunología , Vacunas contra Escherichia coli/inmunología , Animales , Aotidae , Escherichia coli Enterotoxigénica/inmunología , Infecciones por Escherichia coli/prevención & control , Cobayas , Ratones , Proteínas Recombinantes de Fusión/inmunología
3.
Infect Immun ; 87(3)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30602504

RESUMEN

CS6, a prevalent surface antigen expressed in nearly 20% of clinical enterotoxigenic Escherichia coli (ETEC) isolates, is comprised of two major subunit proteins, CssA and CssB. Using donor strand complementation, we constructed a panel of recombinant proteins of 1 to 3 subunits that contained combinations of CssA and/or CssB subunits and a donor strand, a C-terminal extension of 16 amino acids that was derived from the N terminus of either CssA or CssB. While the entire panel of recombinant proteins could be obtained as soluble, folded proteins, it was observed that the proteins possessing a heterologous donor strand, derived from the CS6 subunit different from the C-terminal subunit, had the highest degree of physical and thermal stability. Immunological characterization of the proteins, using a murine model, demonstrated that robust anti-CS6 immune responses were generated from fusions containing both CssA and CssB. Proteins containing only CssA were weakly immunogenic. Heterodimers, i.e., CssBA and CssAB, were sufficient to recapitulate the anti-CS6 immune response elicited by immunization with CS6, including the generation of functional neutralizing antibodies, as no further enhancement of the response was obtained with the addition of a third CS6 subunit. Our findings here demonstrate the feasibility of including a recombinant CS6 subunit protein in a subunit vaccine strategy against ETEC.


Asunto(s)
Antígenos Bacterianos/inmunología , Escherichia coli Enterotoxigénica/metabolismo , Proteínas de Escherichia coli/inmunología , Vacunas contra Escherichia coli/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/química , Antígenos Bacterianos/metabolismo , Escherichia coli Enterotoxigénica/inmunología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Femenino , Regulación Bacteriana de la Expresión Génica , Inmunoglobulina G/sangre , Ratones , Ratones Endogámicos BALB C , Subunidades de Proteína/inmunología
4.
Mol Microbiol ; 95(1): 116-26, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25355550

RESUMEN

Pathogenic enterotoxigenic Escherichia coli (ETEC) are the major bacterial cause of diarrhea in young children in developing countries and in travelers, causing significant mortality in children. Adhesive fimbriae are a prime virulence factor for ETEC, initiating colonization of the small intestinal epithelium. Similar to other Gram-negative bacteria, ETEC express one or more diverse fimbriae, some assembled by the chaperone-usher pathway and others by the alternate chaperone pathway. Here, we elucidate structural and biophysical aspects and adaptations of each fimbrial type to its respective host niche. CS20 fimbriae are compared with colonization factor antigen I (CFA/I) fimbriae, which are two ETEC fimbriae assembled via different pathways, and with P-fimbriae from uropathogenic E. coli. Many fimbriae unwind from their native helical filament to an extended linear conformation under force, thereby sustaining adhesion by reducing load at the point of contact between the bacterium and the target cell. CFA/I fimbriae require the least force to unwind, followed by CS20 fimbriae and then P-fimbriae, which require the highest unwinding force. We conclude from our electron microscopy reconstructions, modeling and force spectroscopy data that the target niche plays a central role in the biophysical properties of fimbriae that are critical for bacterial pathophysiology.


Asunto(s)
Escherichia coli Enterotoxigénica/metabolismo , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Fimbrias Bacterianas/química , Escherichia coli Enterotoxigénica/química , Escherichia coli Enterotoxigénica/genética , Fimbrias Bacterianas/metabolismo , Microscopía Electrónica , Modelos Moleculares , Estructura Secundaria de Proteína , Homología Estructural de Proteína
5.
PLoS Pathog ; 10(8): e1004316, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25122114

RESUMEN

Adhesive pili on the surface of pathogenic bacteria comprise polymerized pilin subunits and are essential for initiation of infections. Pili assembled by the chaperone-usher pathway (CUP) require periplasmic chaperones that assist subunit folding, maintain their stability, and escort them to the site of bioassembly. Until now, CUP chaperones have been classified into two families, FGS and FGL, based on the short and long length of the subunit-interacting loops between its F1 and G1 ß-strands, respectively. CfaA is the chaperone for assembly of colonization factor antigen I (CFA/I) pili of enterotoxigenic E. coli (ETEC), a cause of diarrhea in travelers and young children. Here, the crystal structure of CfaA along with sequence analyses reveals some unique structural and functional features, leading us to propose a separate family for CfaA and closely related chaperones. Phenotypic changes resulting from mutations in regions unique to this chaperone family provide insight into their function, consistent with involvement of these regions in interactions with cognate subunits and usher proteins during pilus assembly.


Asunto(s)
Escherichia coli Enterotoxigénica/patogenicidad , Escherichia coli Enterotoxigénica/ultraestructura , Fimbrias Bacterianas/ultraestructura , Chaperonas Moleculares/ultraestructura , Escherichia coli Enterotoxigénica/metabolismo , Infecciones por Escherichia coli/metabolismo , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/ultraestructura , Fimbrias Bacterianas/química , Fimbrias Bacterianas/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica
6.
J Biol Chem ; 287(9): 6150-8, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22215679

RESUMEN

Class 5 fimbriae of enterotoxigenic Escherichia coli (ETEC) comprise eight serologically discrete colonization factors that mediate small intestinal adhesion. Their differentiation has been attributed to the pressure imposed by host adaptive immunity. We sequenced the major pilin and minor adhesin subunit genes of a geographically diverse population of ETEC elaborating CFA/I (n = 31), CS17 (n = 20), and CS2 (n = 18) and elucidated the functional effect of microevolutionary processes. Between the fimbrial types, the pairwise nucleotide diversity for the pilin or adhesin genes ranged from 35-43%. Within each fimbrial type, there were 17 non-synonymous and 1 synonymous point mutations among all pilin or adhesin gene copies, implying that each fimbrial type was acquired by ETEC strains very recently, consistent with a recent origin of this E. coli pathotype. The 17 non-synonymous allelic differences occurred in the CFA/I pilin gene cfaB (two changes) and adhesin gene cfaE (three changes), and CS17 adhesin gene csbD (12 changes). All but one amino acid change in the adhesins clustered around the predicted ligand-binding pocket. Functionally, these changes conferred an increase in cell adhesion in a flow chamber assay. In contrast, the two mutations in the non-adhesive CfaB subunit localized to the intersubunit interface and significantly reduced fimbrial adhesion in this assay. In conclusion, naturally occurring mutations in the ETEC adhesive and non-adhesive subunits altered function, were acquired under positive selection, and are predicted to impact bacteria-host interactions.


Asunto(s)
Adhesión Bacteriana/genética , Escherichia coli Enterotoxigénica/genética , Proteínas de Escherichia coli/genética , Evolución Molecular , Proteínas Fimbrias/genética , Filogenia , Adaptación Fisiológica/genética , Adhesinas Bacterianas/química , Adhesinas Bacterianas/genética , Adhesinas de Escherichia coli/química , Adhesinas de Escherichia coli/genética , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Cristalografía , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/química , Proteínas Fimbrias/química , Estructura Terciaria de Proteína , Factores de Virulencia/química , Factores de Virulencia/genética
7.
PLoS One ; 18(12): e0294021, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38091314

RESUMEN

Infectious diarrhea is a World Health Organization public health priority area due to the lack of effective vaccines and an accelerating global antimicrobial resistance crisis. New strategies are urgently needed such as immunoprophylactic for prevention of diarrheal diseases. Hyperimmune bovine colostrum (HBC) is an established and effective prophylactic for infectious diarrhea. The commercial HBC product, Travelan® (Immuron Ltd, Australia) targets multiple strains of enterotoxigenic Escherichia coli (ETEC) is highly effective in preventing diarrhea in human clinical studies. Although Travelan® targets ETEC, preliminary studies suggested cross-reactivity with other Gram-negative enteric pathogens including Shigella and Salmonella species. For this study we selected an invasive diarrheal/dysentery-causing enteric pathogen, Shigella, to evaluate the effectiveness of Travelan®, both in vitro and in vivo. Here we demonstrate broad cross-reactivity of Travelan® with all four Shigella spp. (S. flexneri, S. sonnei, S. dysenteriae and S. boydii) and important virulence factor Shigella antigens. Naïve juvenile rhesus macaques (NJRM) were randomized, 8 dosed with Travelan® and 4 with a placebo intragastrically twice daily over 6 days. All NJRM were challenged with S. flexneri 2a strain 2457T on the 4th day of treatment and monitored for diarrheal symptoms. All placebo-treated NJRM displayed acute dysentery symptoms within 24-36 hours of challenge. Two Travelan®-treated NJRM displayed dysentery symptoms and six animals remained healthy and symptom-free post challenge; resulting in 75% efficacy of prevention of shigellosis (p = 0.014). These results strongly indicate that Travelan® is functionally cross-reactive and an effective prophylactic for shigellosis. This has positive implications for the prophylactic use of Travelan® for protection against both ETEC and Shigella spp. diarrheal infections. Future refinement and expansion of pathogens recognized by HBC including Travelan® could revolutionize current management of gastrointestinal infections and outbreaks in travelers' including military, peacekeepers, humanitarian workers and in populations living in endemic regions of the world.


Asunto(s)
Disentería Bacilar , Disentería , Escherichia coli Enterotoxigénica , Shigella , Femenino , Embarazo , Animales , Bovinos , Humanos , Disentería Bacilar/epidemiología , Macaca mulatta , Calostro , Factores Inmunológicos , Diarrea/prevención & control
8.
Proc Natl Acad Sci U S A ; 106(26): 10793-8, 2009 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-19515814

RESUMEN

Adhesion pili (fimbriae) play a critical role in initiating the events that lead to intestinal colonization and diarrheal disease by enterotoxigenic Escherichia coli (ETEC), an E. coli pathotype that inflicts an enormous global disease burden. We elucidate atomic structures of an ETEC major pilin subunit, CfaB, from colonization factor antigen I (CFA/I) fimbriae. These data are used to construct models for 2 morphological forms of CFA/I fimbriae that are both observed in vivo: the helical filament into which it is typically assembled, and an extended, unwound conformation. Modeling and corroborative mutational data indicate that proline isomerization is involved in the conversion between these helical and extended forms. Our findings affirm the strong structural similarities seen between class 5 fimbriae (from bacteria primarily causing gastrointestinal disease) and class 1 pili (from bacteria that cause urinary, respiratory, and other infections) in the absence of significant primary sequence similarity. They also suggest that morphological and biochemical differences between fimbrial types, regardless of class, provide structural specialization that facilitates survival of each bacterial pathotype in its preferred host microenvironment. Last, we present structural evidence for bacterial use of antigenic variation to evade host immune responses, in that residues occupying the predicted surface-exposed face of CfaB and related class 5 pilins show much higher genetic sequence variability than the remainder of the pilin protein.


Asunto(s)
Escherichia coli Enterotoxigénica/química , Proteínas de Escherichia coli/química , Proteínas Fimbrias/química , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli Enterotoxigénica/genética , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Proteínas Fimbrias/genética , Proteínas Fimbrias/inmunología , Modelos Moleculares , Mutación , Prolina/química , Prolina/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética
9.
Mol Microbiol ; 76(2): 489-502, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20345656

RESUMEN

In the intestine, enterotoxigenic Escherichia coli works against peristaltic forces, adhering to the epithelium via the colonization factor antigen I (CFA/I) fimbrial adhesin CfaE. The CfaE adhesin is similar in localization and tertiary (but not primary) structure to FimH, the type 1 fimbrial adhesin of uropathogenic E. coli, which shows shear-dependent binding to epithelial receptors by an allosteric catch-bond mechanism. Thus, we speculated that CfaE is also capable of shear-enhanced binding. Indeed, bovine erythrocytes coursing over immobilized CFA/I fimbriae in flow chambers exhibited low accumulation levels and fast rolling at low shear, but an 80-fold increase in accumulation and threefold decrease in rolling velocity at elevated shear. This effect was reversible and abolished by pre-incubation of fimbriae with anti-CfaE antibody. Erythrocytes bound to whole CfaE in the same shear-enhanced manner, but to CfaE adhesin domain in a shear-inhibitable fashion. Residue replacements designed to disrupt CfaE interdomain interaction decreased the shear dependency of adhesion and increased binding under static conditions to human intestinal epithelial cells. These findings indicate that close interaction between adhesive and anchoring pilin domains of CfaE keeps the former in a low-affinity state that toggles into a high-affinity state upon separation of two domains, all consistent with an allosteric catch-bond mechanism of CfaE binding.


Asunto(s)
Escherichia coli Enterotoxigénica/patogenicidad , Proteínas de Escherichia coli/metabolismo , Proteínas Fimbrias/metabolismo , Factores de Virulencia/metabolismo , Animales , Sitios de Unión , Bovinos , Eritrocitos/metabolismo , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína
10.
PLoS One ; 15(3): e0230138, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32176708

RESUMEN

Surface-expressed colonization factors and their subunits are promising candidates for inclusion into a multivalent vaccine targeting enterotoxigenic Escherichia coli (ETEC), a leading cause of acute bacterial diarrhea in developing regions. However, soluble antigens are often poorly immunogenic in the absence of an adjuvant. We show here that the serum immune response to CfaE, the adhesin of the ETEC colonization factor CFA/I, can be enhanced in BALB/c mice by immunization with a chimeric antigen containing CfaE and pentameric cholera toxin B subunit (CTB) of cholera toxin from Vibrio cholerae. We constructed this antigen by replacing the coding sequence for the A1 domain of the cholera toxin A subunit (CTA) with the sequence of donor strand complemented CfaE (dscCfaE) within the cholera toxin operon, resulting in a dscCfaE-CTA2 fusion. After expression, via non-covalent interactions between CTA2 and CTB, the fusion and CTB polypeptides assemble into a complex containing a single dscCfaE-CTA2 protein bound to pentameric CTB (dscCfaE-CTA2/CTB). This holotoxin-like chimera retained the GM1 ganglioside binding activity of CTB, as well as the ability of CfaE to mediate the agglutination of bovine red blood cells when adsorbed to polystyrene beads. When administered intranasally to mice, the presence of CTB in the chimera significantly increased the serum immune response to CfaE compared to dscCfaE alone, stimulating a response similar to that obtained with a matched admixture of dscCfaE and CTB. However, by the orogastric route, immunization with the chimera elicited a superior functional immune response compared to an equivalent admixture of dscCfaE and CTB, supporting further investigation of the chimera as an ETEC vaccine candidate.


Asunto(s)
Toxina del Cólera , Escherichia coli Enterotoxigénica , Vacunas contra Escherichia coli , Proteínas Fimbrias , Proteínas Recombinantes de Fusión , Animales , Femenino , Ratones , Adhesinas Bacterianas/inmunología , Adhesinas Bacterianas/metabolismo , Adyuvantes Inmunológicos/administración & dosificación , Toxina del Cólera/genética , Toxina del Cólera/inmunología , Toxina del Cólera/metabolismo , Escherichia coli Enterotoxigénica/inmunología , Vacunas contra Escherichia coli/inmunología , Proteínas Fimbrias/genética , Proteínas Fimbrias/inmunología , Proteínas Fimbrias/metabolismo , Inmunización , Inmunogenicidad Vacunal , Ratones Endogámicos BALB C , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA