Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
EMBO J ; 36(14): 2126-2145, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28607005

RESUMEN

Mitochondrial dynamics is a conserved process by which mitochondria undergo repeated cycles of fusion and fission, leading to exchange of mitochondrial genetic content, ions, metabolites, and proteins. Here, we examine the role of the mitochondrial fusion protein optic atrophy 1 (OPA1) in differentiated skeletal muscle by reducing OPA1 gene expression in an inducible manner. OPA1 deficiency in young mice results in non-lethal progressive mitochondrial dysfunction and loss of muscle mass. Mutant mice are resistant to age- and diet-induced weight gain and insulin resistance, by mechanisms that involve activation of ER stress and secretion of fibroblast growth factor 21 (FGF21) from skeletal muscle, resulting in increased metabolic rates and improved whole-body insulin sensitivity. OPA1-elicited mitochondrial dysfunction activates an integrated stress response that locally induces muscle atrophy, but via secretion of FGF21 acts distally to modulate whole-body metabolism.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , GTP Fosfohidrolasas/metabolismo , Resistencia a la Insulina , Músculos/metabolismo , Atrofia Muscular/patología , Obesidad/prevención & control , Animales , GTP Fosfohidrolasas/deficiencia , Técnicas de Silenciamiento del Gen , Ratones
2.
Circ Res ; 122(1): 58-73, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29092894

RESUMEN

RATIONALE: Cardiac lipotoxicity, characterized by increased uptake, oxidation, and accumulation of lipid intermediates, contributes to cardiac dysfunction in obesity and diabetes mellitus. However, mechanisms linking lipid overload and mitochondrial dysfunction are incompletely understood. OBJECTIVE: To elucidate the mechanisms for mitochondrial adaptations to lipid overload in postnatal hearts in vivo. METHODS AND RESULTS: Using a transgenic mouse model of cardiac lipotoxicity overexpressing ACSL1 (long-chain acyl-CoA synthetase 1) in cardiomyocytes, we show that modestly increased myocardial fatty acid uptake leads to mitochondrial structural remodeling with significant reduction in minimum diameter. This is associated with increased palmitoyl-carnitine oxidation and increased reactive oxygen species (ROS) generation in isolated mitochondria. Mitochondrial morphological changes and elevated ROS generation are also observed in palmitate-treated neonatal rat ventricular cardiomyocytes. Palmitate exposure to neonatal rat ventricular cardiomyocytes initially activates mitochondrial respiration, coupled with increased mitochondrial polarization and ATP synthesis. However, long-term exposure to palmitate (>8 hours) enhances ROS generation, which is accompanied by loss of the mitochondrial reticulum and a pattern suggesting increased mitochondrial fission. Mechanistically, lipid-induced changes in mitochondrial redox status increased mitochondrial fission by increased ubiquitination of AKAP121 (A-kinase anchor protein 121) leading to reduced phosphorylation of DRP1 (dynamin-related protein 1) at Ser637 and altered proteolytic processing of OPA1 (optic atrophy 1). Scavenging mitochondrial ROS restored mitochondrial morphology in vivo and in vitro. CONCLUSIONS: Our results reveal a molecular mechanism by which lipid overload-induced mitochondrial ROS generation causes mitochondrial dysfunction by inducing post-translational modifications of mitochondrial proteins that regulate mitochondrial dynamics. These findings provide a novel mechanism for mitochondrial dysfunction in lipotoxic cardiomyopathy.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Dinaminas/metabolismo , Dinámicas Mitocondriales/fisiología , Miocitos Cardíacos/metabolismo , Atrofia Óptica Autosómica Dominante/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Preparación de Corazón Aislado/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocitos Cardíacos/patología , Ratas , Ratas Wistar
3.
Nat Metab ; 2(11): 1248-1264, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33106689

RESUMEN

In addition to fatty acids, glucose and lactate are important myocardial substrates under physiologic and stress conditions. They are metabolized to pyruvate, which enters mitochondria via the mitochondrial pyruvate carrier (MPC) for citric acid cycle metabolism. In the present study, we show that MPC-mediated mitochondrial pyruvate utilization is essential for the partitioning of glucose-derived cytosolic metabolic intermediates, which modulate myocardial stress adaptation. Mice with cardiomyocyte-restricted deletion of subunit 1 of MPC (cMPC1-/-) developed age-dependent pathologic cardiac hypertrophy, transitioning to a dilated cardiomyopathy and premature death. Hypertrophied hearts accumulated lactate, pyruvate and glycogen, and displayed increased protein O-linked N-acetylglucosamine, which was prevented by increasing availability of non-glucose substrates in vivo by a ketogenic diet (KD) or a high-fat diet, which reversed the structural, metabolic and functional remodelling of non-stressed cMPC1-/- hearts. Although concurrent short-term KDs did not rescue cMPC1-/- hearts from rapid decompensation and early mortality after pressure overload, 3 weeks of a KD before transverse aortic constriction was sufficient to rescue this phenotype. Together, our results highlight the centrality of pyruvate metabolism to myocardial metabolism and function.


Asunto(s)
Adaptación Fisiológica/fisiología , Proteínas de Transporte de Anión/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Miocardio/metabolismo , Estrés Fisiológico/fisiología , Adaptación Fisiológica/genética , Animales , Proteínas de Transporte de Anión/genética , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Constricción Patológica , Citosol/metabolismo , Dieta Alta en Grasa , Dieta Cetogénica , Ecocardiografía , Técnicas In Vitro , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Miocitos Cardíacos/metabolismo , Ácido Pirúvico/metabolismo , Estrés Fisiológico/genética
4.
Exp Hematol ; 50: 77-83.e6, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28408238

RESUMEN

Podocalyxin (Podxl) is a CD34 orthologue and cell surface sialomucin reported to have roles in renal podocyte diaphragm slit development; vascular cell integrity; and the progression of blood, breast, and prostate cancers. Roles for Podxl during nonmalignant hematopoiesis, however, are largely undefined. We have developed a Vav-Cre Podxl knockout (KO) mouse model, and report on novel roles for Podxl in governing stress myelopoiesis. At steady state, Podxl expression among hematopoietic progenitor cells was low level but was induced by granulocyte colony-stimulating factor (G-CSF) in myeloid progenitors and by thrombopoietin in human stem cells. In keeping with low-level Podxl expression at steady state, Vav-Cre deletion of Podxl did not markedly alter peripheral blood cell levels. A G-CSF challenge in Podxl-KO mice, in contrast, hyperelevated peripheral blood neutrophil and monocyte levels. Podxl-KO also substantially heightened neutrophil levels after 5-fluorouracil myeloablation. These loss-of-function phenotypes were selective, and Podxl-KO did not alter lymphocyte, basophil, or eosinophil levels. Within bone marrow (and after G-CSF challenge), Podxl deletion moderately decreased colony forming units-granulocytes, eyrthrocytes, monocyte/macrophages, megakaryocytes and CD16/32posCD11bpos progenitors but did not affect Gr-1pos cell populations. Notably, Podxl-KO did significantly heighten peripheral blood neutrophil migration capacities. To interrogate Podxl's action mechanisms, a co-immunoprecipitation plus liquid chromatography-mass spectrometry approach was applied using hematopoietic progenitors from G-CSF-challenged mice. Rap1a, a Ras-related small GTPase, was a predominant co-retrieved Podxl partner. In bone marrow human progenitor cells, Podxl-KO led to heightened G-CSF activation of Rap1aGTP, and Rap1aGTP inhibition attenuated Podxl-KO neutrophil migration. Studies have revealed novel roles for Podxl as an important modulator of neutrophil and monocyte formation and of Rap1a activation during stress hematopoiesis.


Asunto(s)
Mielopoyesis , Neutrófilos/fisiología , Sialoglicoproteínas/genética , Estrés Fisiológico , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Orden Génico , Sitios Genéticos , Factor Estimulante de Colonias de Granulocitos/farmacología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones , Ratones Noqueados , Mielopoyesis/genética , Sialoglicoproteínas/metabolismo , Estrés Fisiológico/genética , Proteínas de Unión al GTP rap1
5.
Exp Hematol Oncol ; 5: 4, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26848406

RESUMEN

BACKGROUND: Dysregulation of miRNAs that can act as tumor suppressors or oncogenes can result in tumorigenesis. Previously we demonstrated that miR-199b was significantly downregulated in acute myeloid leukemia (AML) and targets podocalyxin and discoidin domain receptor 1. Herein we investigated the functional role of miR-199b in AML and its prognostic implications. METHODS: Major approaches include transduction of hematopoietic stem cells and bone marrow transplantation, analyses of blood lineages, histone deacetylases (HDAC) inhibitors, and molecular and clinical data analyses of AML patients using The Cancer Genome Atlas (TCGA). RESULTS: We first examined the relative miR-199b expression in steady state hematopoiesis and showed CD33(+) myeloid progenitors had the highest miR-199b expression. Further, silencing of miR-199b in CD34(+) cells resulted in significant increases in CFU-GM colonies. Via TCGA we analyzed the molecular and clinical characteristics of 166 AML cases to investigate a prognostic role for miR-199b. The Kaplan-Meier curves for high and low expression values of miR-199b and the observed distribution of miRNA expression revealed the highly expressed group had significantly better survival outcomes (p < 0.016, log rank test). Additionally, there was significant difference between miR-199b expression across the AML subtypes with particularly low expression found in the FAB-M5 subtype. Furthermore, FAB-M5 subtype showed a poor prognosis with a 1-year survival rate of only 25 %, compared with 51 % survival in the overall sample (p < 0.024). Furthermore, significant inverse correlation of HoxA7 and HoxB6 expression with miR-199b was observed in FAB-M5 AML patients. Molecular mutations were analyzed among miR-199b high and low AML cases. Significant correlations in terms of association and survival outcomes were observed for NPMc and IDH1 mutations. Treatment of THP-1 cells (represents M5-subtype) with HDAC inhibitors AR-42, Panobinostat, or Decitabine showed miR-199b expression was significantly elevated upon AR-42 and Panobinostat treatment. To further understand the hematopathological consequences of decreased miR-199b, we employed a bone-marrow transduce/transplant (BMT) mouse model. Interestingly, in vivo miR-199b silencing per-se in HSCs did not result in profound perturbations. CONCLUSIONS: Loss of miR-199b can lead to myeloproliferation while HDAC inhibitors restore miR-199b expression and promote apoptosis. Low miR-199b in AML patients correlates with worse overall survival and has prognostic significance for FAB-M5 subtype.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA