Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 31(21): 5882-90, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-25950404

RESUMEN

Using high throughput single-molecule total internal reflection fluorescence microscopy (TIRFM), we have acquired molecular trajectories of bovine serum albumin (BSA) and hen egg white lysozyme during protein layer formation at the silicone oil-water interface. These trajectories were analyzed to determine the distribution of molecular diffusion coefficients, and for signatures of molecular crowding/caging, including subdiffusive motion and temporal anticorrelation of the instantaneous velocity vector. The evolution of these properties with aging time of the interface was compared with dynamic interfacial tension measurements. For both lysozyme and BSA, we observed an overall slowing of protein objects, the onset of both subdiffusive and anticorrelated motion (associated with crowding), and a decrease in the interfacial tension with aging time. For lysozyme, all of these phenomena occurred virtually simultaneously, consistent with a homogeneous model of layer formation that involves gradual crowding of weakly interacting proteins. For BSA, however, the slowing occurred first, followed by the signatures of crowding/caging, followed by a decrease in interfacial tension, consistent with a heterogeneous model of layer formation involving the formation of protein clusters. The application of microrheological methods to single molecule trajectories described here provides an unprecedented level of mechanistic interpretation of interfacial events that occurred over a wide range of interfacial protein coverage.


Asunto(s)
Aceites/química , Agua/química , Animales , Bovinos , Pollos , Muramidasa/química , Unión Proteica , Estructura Terciaria de Proteína , Albúmina Sérica Bovina/química
2.
J Phys Chem Lett ; 6(13): 2583-7, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26266737

RESUMEN

High-throughput single-molecule total internal reflection fluorescence microscopy was used to investigate the effects of pH and ionic strength on bovine serum albumin (BSA) adsorption, desorption, and interfacial diffusion at the aqueous-fused silica interface. At high pH and low ionic strength, negatively charged BSA adsorbed slowly to the negatively charged fused silica surface. At low pH and low ionic strength, where BSA was positively charged, or in solutions at higher ionic strength, adsorption was approximately 1000 times faster. Interestingly, neither surface residence times nor the interfacial diffusion coefficients of BSA were influenced by pH or ionic strength. These findings suggested that adsorption kinetics were dominated by energy barriers associated with electrostatic interactions, but once adsorbed, protein-surface interactions were dominated by short-range nonelectrostatic interactions. These results highlight the ability of single-molecule techniques to isolate elementary processes (e.g., adsorption and desorption) under steady-state conditions, which would be impossible to measure using ensemble-averaging methods.


Asunto(s)
Proteínas/química , Dióxido de Silicio/química , Agua/química , Adsorción , Difusión , Soluciones , Electricidad Estática , Propiedades de Superficie
3.
J Pharm Sci ; 104(12): 4056-4064, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26413998

RESUMEN

Protein aggregation and particle formation have been observed when protein solutions contact hydrophobic interfaces, and it has been suggested that this undesirable phenomenon may be initiated by interfacial adsorption and subsequent gelation of the protein. The addition of surfactants, such as polysorbate 20, to protein formulations has been proposed as a way to reduce protein adsorption at silicone oil-water interfaces and mitigate the production of aggregates and particles. In an accelerated stability study, monoclonal antibody formulations containing varying concentrations of polysorbate 20 were incubated and agitated in pre-filled glass syringes (PFS), exposing the protein to silicone oil-water interfaces at the siliconized syringe walls, air-water interfaces, and agitation stress. Following agitation in siliconized syringes that contained an air bubble, lower particle concentrations were measured in the surfactant-containing antibody formulations than in surfactant-free formulations. Polysorbate 20 reduced particle formation when added at concentrations above or below the critical micelle concentration (CMC). The ability of polysorbate 20 to decrease particle generation in PFS corresponded with its ability to inhibit gelation of the adsorbed protein layer, which was assessed by measuring the interfacial diffusion of individual antibody molecules at the silicone oil-water interface using total internal reflectance fluorescence (TIRF) microscopy with single-molecule tracking.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Formación de Anticuerpos/inmunología , Tensoactivos/química , Química Farmacéutica/métodos , Geles/química , Polisorbatos/química , Aceites de Silicona/química , Jeringas , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA