Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 25(6): 1007-1019, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38816617

RESUMEN

Rare multipotent stem cells replenish millions of blood cells per second through a time-consuming process, passing through multiple stages of increasingly lineage-restricted progenitors. Although insults to the blood-forming system highlight the need for more rapid blood replenishment from stem cells, established models of hematopoiesis implicate only one mandatory differentiation pathway for each blood cell lineage. Here, we establish a nonhierarchical relationship between distinct stem cells that replenish all blood cell lineages and stem cells that replenish almost exclusively platelets, a lineage essential for hemostasis and with important roles in both the innate and adaptive immune systems. These distinct stem cells use cellularly, molecularly and functionally separate pathways for the replenishment of molecularly distinct megakaryocyte-restricted progenitors: a slower steady-state multipotent pathway and a fast-track emergency-activated platelet-restricted pathway. These findings provide a framework for enhancing platelet replenishment in settings in which slow recovery of platelets remains a major clinical challenge.


Asunto(s)
Plaquetas , Diferenciación Celular , Células Madre Hematopoyéticas , Megacariocitos , Plaquetas/inmunología , Plaquetas/metabolismo , Animales , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Ratones , Diferenciación Celular/inmunología , Megacariocitos/citología , Linaje de la Célula , Ratones Endogámicos C57BL , Hematopoyesis , Trombopoyesis , Ratones Noqueados , Humanos , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Células Madre Multipotentes/inmunología
2.
Nat Immunol ; 17(6): 666-676, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27043410

RESUMEN

According to current models of hematopoiesis, lymphoid-primed multi-potent progenitors (LMPPs) (Lin(-)Sca-1(+)c-Kit(+)CD34(+)Flt3(hi)) and common myeloid progenitors (CMPs) (Lin(-)Sca-1(+)c-Kit(+)CD34(+)CD41(hi)) establish an early branch point for separate lineage-commitment pathways from hematopoietic stem cells, with the notable exception that both pathways are proposed to generate all myeloid innate immune cell types through the same myeloid-restricted pre-granulocyte-macrophage progenitor (pre-GM) (Lin(-)Sca-1(-)c-Kit(+)CD41(-)FcγRII/III(-)CD150(-)CD105(-)). By single-cell transcriptome profiling of pre-GMs, we identified distinct myeloid differentiation pathways: a pathway expressing the gene encoding the transcription factor GATA-1 generated mast cells, eosinophils, megakaryocytes and erythroid cells, and a pathway lacking expression of that gene generated monocytes, neutrophils and lymphocytes. These results identify an early hematopoietic-lineage bifurcation that separates the myeloid lineages before their segregation from other hematopoietic-lineage potential.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Linfocitos/fisiología , Células Mieloides/fisiología , Células Progenitoras Mieloides/fisiología , Animales , Antígenos CD/metabolismo , Células Cultivadas , Biología Computacional , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Hematopoyesis , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Análisis de Matrices Tisulares , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo
3.
Nat Immunol ; 17(12): 1424-1435, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27695000

RESUMEN

The final stages of restriction to the T cell lineage occur in the thymus after the entry of thymus-seeding progenitors (TSPs). The identity and lineage potential of TSPs remains unclear. Because the first embryonic TSPs enter a non-vascularized thymic rudiment, we were able to directly image and establish the functional and molecular properties of embryonic thymopoiesis-initiating progenitors (T-IPs) before their entry into the thymus and activation of Notch signaling. T-IPs did not include multipotent stem cells or molecular evidence of T cell-restricted progenitors. Instead, single-cell molecular and functional analysis demonstrated that most fetal T-IPs expressed genes of and had the potential to develop into lymphoid as well as myeloid components of the immune system. Moreover, studies of embryos deficient in the transcriptional regulator RBPJ demonstrated that canonical Notch signaling was not involved in pre-thymic restriction to the T cell lineage or the migration of T-IPs.


Asunto(s)
Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Células Progenitoras Linfoides/fisiología , Células Progenitoras Mieloides/fisiología , Receptores Notch/metabolismo , Linfocitos T/fisiología , Timo/inmunología , Animales , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Células Cultivadas , Feto , Regulación del Desarrollo de la Expresión Génica , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal
4.
Mol Cell ; 78(3): 477-492.e8, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32386542

RESUMEN

Myelofibrosis is a severe myeloproliferative neoplasm characterized by increased numbers of abnormal bone marrow megakaryocytes that induce fibrosis, destroying the hematopoietic microenvironment. To determine the cellular and molecular basis for aberrant megakaryopoiesis in myelofibrosis, we performed single-cell transcriptome profiling of 135,929 CD34+ lineage- hematopoietic stem and progenitor cells (HSPCs), single-cell proteomics, genomics, and functional assays. We identified a bias toward megakaryocyte differentiation apparent from early multipotent stem cells in myelofibrosis and associated aberrant molecular signatures. A sub-fraction of myelofibrosis megakaryocyte progenitors (MkPs) are transcriptionally similar to healthy-donor MkPs, but the majority are disease specific, with distinct populations expressing fibrosis- and proliferation-associated genes. Mutant-clone HSPCs have increased expression of megakaryocyte-associated genes compared to wild-type HSPCs, and we provide early validation of G6B as a potential immunotherapy target. Our study paves the way for selective targeting of the myelofibrosis clone and illustrates the power of single-cell multi-omics to discover tumor-specific therapeutic targets and mediators of tissue fibrosis.


Asunto(s)
Hematopoyesis/fisiología , Megacariocitos/patología , Mielofibrosis Primaria/sangre , Anciano , Anciano de 80 o más Años , Diferenciación Celular , Femenino , Regulación de la Expresión Génica , Hematopoyesis/genética , Células Madre Hematopoyéticas/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Megacariocitos/fisiología , Persona de Mediana Edad , Mutación , Receptores Inmunológicos/genética , Análisis de la Célula Individual/métodos
5.
Mol Cell ; 73(6): 1292-1305.e8, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30765193

RESUMEN

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for resolving transcriptional heterogeneity. However, its application to studying cancerous tissues is currently hampered by the lack of coverage across key mutation hotspots in the vast majority of cells; this lack of coverage prevents the correlation of genetic and transcriptional readouts from the same single cell. To overcome this, we developed TARGET-seq, a method for the high-sensitivity detection of multiple mutations within single cells from both genomic and coding DNA, in parallel with unbiased whole-transcriptome analysis. Applying TARGET-seq to 4,559 single cells, we demonstrate how this technique uniquely resolves transcriptional and genetic tumor heterogeneity in myeloproliferative neoplasms (MPN) stem and progenitor cells, providing insights into deregulated pathways of mutant and non-mutant cells. TARGET-seq is a powerful tool for resolving the molecular signatures of genetically distinct subclones of cancer cells.


Asunto(s)
Biomarcadores de Tumor/genética , Análisis Mutacional de ADN/métodos , Heterogeneidad Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Leucemia/genética , Mutación , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Humanos , Células Jurkat , Células K562 , Reproducibilidad de los Resultados , Schizosaccharomyces/genética
6.
Blood ; 143(2): 178-182, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37963262

RESUMEN

ABSTRACT: Nonmelanoma skin cancers (NMSCs) in ruxolitinib-treated patients with myeloproliferative neoplasms behave aggressively, with adverse features and high recurrence. In our cohort, mortality from metastatic NMSC exceeded that from myelofibrosis. Vigilant skin assessment, counseling on NMSC risks, and prospective ruxolitinib-NMSC studies are crucial.


Asunto(s)
Trastornos Mieloproliferativos , Pirazoles , Pirimidinas , Neoplasias Cutáneas , Humanos , Estudios Prospectivos , Trastornos Mieloproliferativos/tratamiento farmacológico , Nitrilos , Neoplasias Cutáneas/tratamiento farmacológico
7.
Nature ; 587(7834): 460-465, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33149301

RESUMEN

Atrial fibrillation, the most common cardiac arrhythmia, is an important contributor to mortality and morbidity, and particularly to the risk of stroke in humans1. Atrial-tissue fibrosis is a central pathophysiological feature of atrial fibrillation that also hampers its treatment; the underlying molecular mechanisms are poorly understood and warrant investigation given the inadequacy of present therapies2. Here we show that calcitonin, a hormone product of the thyroid gland involved in bone metabolism3, is also produced by atrial cardiomyocytes in substantial quantities and acts as a paracrine signal that affects neighbouring collagen-producing fibroblasts to control their proliferation and secretion of extracellular matrix proteins. Global disruption of calcitonin receptor signalling in mice causes atrial fibrosis and increases susceptibility to atrial fibrillation. In mice in which liver kinase B1 is knocked down specifically in the atria, atrial-specific knockdown of calcitonin promotes atrial fibrosis and increases and prolongs spontaneous episodes of atrial fibrillation, whereas atrial-specific overexpression of calcitonin prevents both atrial fibrosis and fibrillation. Human patients with persistent atrial fibrillation show sixfold lower levels of myocardial calcitonin compared to control individuals with normal heart rhythm, with loss of calcitonin receptors in the fibroblast membrane. Although transcriptome analysis of human atrial fibroblasts reveals little change after exposure to calcitonin, proteomic analysis shows extensive alterations in extracellular matrix proteins and pathways related to fibrogenesis, infection and immune responses, and transcriptional regulation. Strategies to restore disrupted myocardial calcitonin signalling thus may offer therapeutic avenues for patients with atrial fibrillation.


Asunto(s)
Arritmias Cardíacas/metabolismo , Calcitonina/metabolismo , Fibrinógeno/biosíntesis , Atrios Cardíacos/metabolismo , Miocardio/metabolismo , Comunicación Paracrina , Animales , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Fibrilación Atrial , Colágeno Tipo I/metabolismo , Femenino , Fibroblastos/metabolismo , Fibrosis/metabolismo , Fibrosis/patología , Atrios Cardíacos/citología , Atrios Cardíacos/patología , Atrios Cardíacos/fisiopatología , Humanos , Masculino , Ratones , Miocardio/citología , Miocardio/patología , Miocitos Cardíacos/metabolismo , Receptores de Calcitonina/metabolismo
8.
Blood ; 141(4): 380-390, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36322938

RESUMEN

Myeloproliferative neoplasms (MPN) are a group of clonal stem cell-derived hematopoietic malignancies driven by aberrant Janus kinase-signal transducer and activator of transcription proteins (JAK/STAT) signaling. Although these are genetically simple diseases, MPNs are phenotypically heterogeneous, reflecting underlying intratumoral heterogeneity driven by the interplay of genetic and nongenetic factors. Their evolution is determined by factors that enable certain cellular subsets to outcompete others. Therefore, techniques that resolve cellular heterogeneity at the single-cell level are ideally placed to provide new insights into MPN biology. With these insights comes the potential to uncover new approaches to predict the clinical course and treat these cancers, ultimately improving outcomes for patients. MPNs present a particularly tractable model of cancer evolution, because most patients present in an early disease phase and only a small proportion progress to aggressive disease. Therefore, it is not surprising that many groundbreaking technological advances in single-cell omics have been pioneered by their application in MPNs. In this review article, we explore how single-cell approaches have provided transformative insights into MPN disease biology, which are broadly applicable across human cancers, and discuss how these studies might be swiftly translated into clinical pathways and may eventually underpin precision medicine.


Asunto(s)
Neoplasias de la Médula Ósea , Neoplasias Hematológicas , Trastornos Mieloproliferativos , Neoplasias , Humanos , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/terapia , Trastornos Mieloproliferativos/metabolismo , Quinasas Janus/metabolismo , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/metabolismo , Transducción de Señal , Janus Quinasa 2/genética , Mutación
9.
Blood ; 142(19): 1622-1632, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37562000

RESUMEN

A critical regulatory role of hematopoietic stem cell (HSC) vascular niches in the bone marrow has been implicated to occur through endothelial niche cell expression of KIT ligand. However, endothelial-derived KIT ligand is expressed in both a soluble and membrane-bound form and not unique to bone marrow niches, and it is also systemically distributed through the circulatory system. Here, we confirm that upon deletion of both the soluble and membrane-bound forms of endothelial-derived KIT ligand, HSCs are reduced in mouse bone marrow. However, the deletion of endothelial-derived KIT ligand was also accompanied by reduced soluble KIT ligand levels in the blood, precluding any conclusion as to whether the reduction in HSC numbers reflects reduced endothelial expression of KIT ligand within HSC niches, elsewhere in the bone marrow, and/or systemic soluble KIT ligand produced by endothelial cells outside of the bone marrow. Notably, endothelial deletion, specifically of the membrane-bound form of KIT ligand, also reduced systemic levels of soluble KIT ligand, although with no effect on stem cell numbers, implicating an HSC regulatory role primarily of soluble rather than membrane KIT ligand expression in endothelial cells. In support of a role of systemic rather than local niche expression of soluble KIT ligand, HSCs were unaffected in KIT ligand deleted bones implanted into mice with normal systemic levels of soluble KIT ligand. Our findings highlight the need for more specific tools to unravel niche-specific roles of regulatory cues expressed in hematopoietic niche cells in the bone marrow.


Asunto(s)
Células Endoteliales , Factor de Células Madre , Ratones , Animales , Factor de Células Madre/metabolismo , Células Madre Hematopoyéticas/metabolismo , Médula Ósea/metabolismo , Huesos , Nicho de Células Madre , Células de la Médula Ósea/metabolismo
10.
Blood ; 141(11): 1316-1321, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36493342

RESUMEN

Myelodysplastic neoplasms (MDSs) and chronic myelomonocytic leukemia (CMML) are clonal disorders driven by progressively acquired somatic mutations in hematopoietic stem cells (HSCs). Hypomethylating agents (HMAs) can modify the clinical course of MDS and CMML. Clinical improvement does not require eradication of mutated cells and may be related to improved differentiation capacity of mutated HSCs. However, in patients with established disease it is unclear whether (1) HSCs with multiple mutations progress through differentiation with comparable frequency to their less mutated counterparts or (2) improvements in peripheral blood counts following HMA therapy are driven by residual wild-type HSCs or by clones with particular combinations of mutations. To address these questions, the somatic mutations of individual stem cells, progenitors (common myeloid progenitors, granulocyte monocyte progenitors, and megakaryocyte erythroid progenitors), and matched circulating hematopoietic cells (monocytes, neutrophils, and naïve B cells) in MDS and CMML were characterized via high-throughput single-cell genotyping, followed by bulk analysis in immature and mature cells before and after AZA treatment. The mutational burden was similar throughout differentiation, with even the most mutated stem and progenitor clones maintaining their capacity to differentiate to mature cell types in vivo. Increased contributions from productive mutant progenitors appear to underlie improved hematopoiesis in MDS following HMA therapy.


Asunto(s)
Leucemia Mielomonocítica Crónica , Síndromes Mielodisplásicos , Humanos , Leucemia Mielomonocítica Crónica/tratamiento farmacológico , Leucemia Mielomonocítica Crónica/genética , Leucemia Mielomonocítica Crónica/metabolismo , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Células Madre Hematopoyéticas/metabolismo , Monocitos , Células Clonales
11.
Nucleic Acids Res ; 51(5): e29, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36631981

RESUMEN

Alternative splicing is an important source of heterogeneity underlying gene expression between individual cells but remains an understudied area due to the paucity of computational tools to analyze splicing dynamics at single-cell resolution. Here, we present MARVEL, a comprehensive R package for single-cell splicing analysis applicable to RNA sequencing generated from the plate- and droplet-based methods. We performed extensive benchmarking of MARVEL against available tools and demonstrated its utility by analyzing multiple publicly available datasets in diverse cell types, including in disease. MARVEL enables systematic and integrated splicing and gene expression analysis of single cells to characterize the splicing landscape and reveal biological insights.


Asunto(s)
Empalme Alternativo , Programas Informáticos , Biología Computacional , Empalme del ARN , Análisis de Secuencia de ARN , Análisis de la Célula Individual
12.
Br J Haematol ; 205(4): 1411-1416, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39004100

RESUMEN

Diagnosis of essential thrombocythaemia (ET) is challenging in patients lacking JAK2/CALR/MPL mutations. In a retrospective evaluation of 320 patients with 'triple-negative thrombocytosis', we assessed utility of bone marrow histology (90.9% of patients) and myeloid gene panel (MGP, 55.6%). Supportive histology ('myeloproliferative neoplasm-definite/probable', 36.8%) was associated with higher platelet counts and varied between centres. 14.6% MGP revealed significant variants: 3.4% JAK2/CALR/MPL and 11.2% other myeloid genes. Final clinical diagnosis was strongly predicted by histology, not MGP. 23.7% received cytoreduction (17.6% under 60 years). Real-world 'triple-negative' ET diagnosis currently depends heavily on histology; we advocate caution in MGP-negative cases and that specific guidelines are needed.


Asunto(s)
Janus Quinasa 2 , Receptores de Trombopoyetina , Humanos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Janus Quinasa 2/genética , Adulto , Receptores de Trombopoyetina/genética , Trombocitemia Esencial/diagnóstico , Trombocitemia Esencial/genética , Reino Unido , Mutación , Calreticulina/genética , Anciano de 80 o más Años , Trombocitosis/genética , Trombocitosis/diagnóstico
13.
Nat Immunol ; 13(4): 412-9, 2012 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-22344248

RESUMEN

The stepwise commitment from hematopoietic stem cells in the bone marrow to T lymphocyte-restricted progenitors in the thymus represents a paradigm for understanding the requirement for distinct extrinsic cues during different stages of lineage restriction from multipotent to lineage-restricted progenitors. However, the commitment stage at which progenitors migrate from the bone marrow to the thymus remains unclear. Here we provide functional and molecular evidence at the single-cell level that the earliest progenitors in the neonatal thymus had combined granulocyte-monocyte, T lymphocyte and B lymphocyte lineage potential but not megakaryocyte-erythroid lineage potential. These potentials were identical to those of candidate thymus-seeding progenitors in the bone marrow, which were closely related at the molecular level. Our findings establish the distinct lineage-restriction stage at which the T cell lineage-commitment process transits from the bone marrow to the remote thymus.


Asunto(s)
Linfocitos B/citología , Linaje de la Célula/inmunología , Células Progenitoras Linfoides/citología , Células Mieloides/citología , Células Precursoras de Linfocitos B/citología , Linfocitos T/citología , Animales , Separación Celular , Citometría de Flujo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/inmunología , Células Progenitoras Linfoides/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Timo/citología
14.
Blood ; 140(1): 38-44, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35421218

RESUMEN

CD19-directed immunotherapies have revolutionized the treatment of advanced B-cell acute lymphoblastic leukemia (B-ALL). Despite initial impressive rates of complete remission (CR) many patients ultimately relapse. Patients with B-ALL successfully treated with CD19-directed T cells eventually relapse, which, coupled with the early onset of CD22 expression during B-cell development, suggests that preexisting CD34+CD22+CD19- (pre)-leukemic cells represent an "early progenitor origin-related" mechanism underlying phenotypic escape to CD19-directed immunotherapies. We demonstrate that CD22 expression precedes CD19 expression during B-cell development. CD34+CD19-CD22+ cells are found in diagnostic and relapsed bone marrow samples of ∼70% of patients with B-ALL, and their frequency increases twofold in patients with B-ALL in CR after CD19 CAR T-cell therapy. The median of CD34+CD19-CD22+ cells before treatment was threefold higher in patients in whom B-ALL relapsed after CD19-directed immunotherapy (median follow-up, 24 months). Fluorescence in situ hybridization analysis in flow-sorted cell populations and xenograft modeling revealed that CD34+CD19-CD22+ cells harbor the genetic abnormalities present at diagnosis and initiate leukemogenesis in vivo. Our data suggest that preleukemic CD34+CD19-CD22+ progenitors underlie phenotypic escape after CD19-directed immunotherapies and reinforce ongoing clinical studies aimed at CD19/CD22 dual targeting as a strategy for reducing CD19- relapses. The implementation of CD34/CD19/CD22 immunophenotyping in clinical laboratories for initial diagnosis and subsequent monitoring of patients with B-ALL during CD19-targeted therapy is encouraged.


Asunto(s)
Antígenos CD19 , Linfoma de Burkitt , Antígenos CD34 , Linfocitos B , Humanos , Inmunofenotipificación , Hibridación Fluorescente in Situ , Recurrencia , Lectina 2 Similar a Ig de Unión al Ácido Siálico
15.
Blood ; 139(19): 2931-2941, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35007321

RESUMEN

The goal of therapy for patients with essential thrombocythemia (ET) and polycythemia vera (PV) is to reduce thrombotic events by normalizing blood counts. Hydroxyurea (HU) and interferon-α (IFN-α) are the most frequently used cytoreductive options for patients with ET and PV at high risk for vascular complications. Myeloproliferative Disorders Research Consortium 112 was an investigator-initiated, phase 3 trial comparing HU to pegylated IFN-α (PEG) in treatment-naïve, high-risk patients with ET/PV. The primary endpoint was complete response (CR) rate at 12 months. A total of 168 patients were treated for a median of 81.0 weeks. CR for HU was 37% and 35% for PEG (P = .80) at 12 months. At 24 to 36 months, CR was 20% to 17% for HU and 29% to 33% for PEG. PEG led to a greater reduction in JAK2V617F at 24 months, but histopathologic responses were more frequent with HU. Thrombotic events and disease progression were infrequent in both arms, whereas grade 3/4 adverse events were more frequent with PEG (46% vs 28%). At 12 months of treatment, there was no significant difference in CR rates between HU and PEG. This study indicates that PEG and HU are both effective treatments for PV and ET. With longer treatment, PEG was more effective in normalizing blood counts and reducing driver mutation burden, whereas HU produced more histopathologic responses. Despite these differences, both agents did not differ in limiting thrombotic events and disease progression in high-risk patients with ET/PV. This trial was registered at www.clinicaltrials.gov as #NCT01259856.


Asunto(s)
Policitemia Vera , Trombocitemia Esencial , Trombosis , Progresión de la Enfermedad , Humanos , Hidroxiurea/efectos adversos , Interferón-alfa/efectos adversos , Policitemia Vera/tratamiento farmacológico , Policitemia Vera/genética , Trombocitemia Esencial/tratamiento farmacológico , Trombocitemia Esencial/genética , Trombosis/inducido químicamente , Trombosis/prevención & control
16.
Value Health ; 27(5): 607-613, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38311180

RESUMEN

OBJECTIVES: Patients with myelofibrosis develop symptoms due to bone marrow fibrosis, systemic inflammation, and/or organomegaly. Alleviating symptoms improves overall quality of life. Clinical trials have historically defined symptom response as a reduction of at least 50% in Total Symptom Score at week 24 compared with baseline. Whether 50% constitutes a meaningful benefit has not been established. This study determined the meaningful change threshold (MCT) for 2 momelotinib phase III trials, SIMPLIFY-1 and SIMPLIFY-2. METHODS: The absolute and percentage MCT was determined using anchor-based methods applied to the modified Myeloproliferative Neoplasm Symptom Assessment Form v2.0 and Patient Global Impression of Change. MCTs were applied retrospectively to determine responder rates. Generalized estimating equations estimated the treatment-related difference in likelihood of improvement. RESULTS: In SIMPLIFY-1, a Janus kinase inhibitor-naive population, the MCT was 8 points. In SIMPLIFY-2, a previously Janus kinase inhibitor-treated population, the MCT was 6 points. A 32% MCT was determined in both studies, showing that the historic 50% reduction threshold may be a conservative choice. In SIMPLIFY-1, a similar proportion of patients achieved responder status with 24 weeks of momelotinib or ruxolitinib therapy based on the absolute MCT (39% vs 41%, respectively). In SIMPLIFY-2, a significantly greater proportion of patients treated with momelotinib achieved responder states compared with best available therapy based on absolute and percent change MCTs. CONCLUSIONS: This study demonstrates that momelotinib provided clinically meaningful symptom benefit for patients with myelofibrosis and provides insight into the appropriateness of the symptom change threshold used in historical studies.


Asunto(s)
Mielofibrosis Primaria , Pirimidinas , Calidad de Vida , Humanos , Mielofibrosis Primaria/tratamiento farmacológico , Pirimidinas/uso terapéutico , Femenino , Masculino , Persona de Mediana Edad , Anciano , Resultado del Tratamiento , Estudios Retrospectivos , Pirazoles/uso terapéutico , Benzamidas/uso terapéutico , Nitrilos/uso terapéutico
17.
Future Oncol ; : 1-12, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39351963

RESUMEN

WHAT IS THIS SUMMARY ABOUT?: This is a summary of an article describing the main results of the MAJIC-PV study. This study looked at using the cancer drug ruxolitinib to treat a type of blood cancer called polycythemia vera. People with polycythemia vera make too many red blood cells in their body. This can make their blood thicker and can increase the chances of blood clots forming in their blood vessels.Researchers wanted to find out how well ruxolitinib worked compared with the best available therapy as a treatment for people with polycythemia vera who were at risk of developing blood clots that could lead to a heart attack or stroke. Specifically, the study looked at people who had already taken the chemotherapy hydroxycarbamide (also known as hydroxyurea) for their polycythemia vera, but it either didn't work for them or gave them side effects that they could not tolerate. WHAT WERE THE RESULTS?: In the study, researchers divided 180 adults with polycythemia vera who were at high risk of developing blood clots that could lead to a stroke into two groups: 93 people who took ruxolitinib twice a day, and 87 people who took the best available therapy. 43% of people who took ruxolitinib and 26% of people who had the best available therapy had normal blood counts and spleen size within 1 year of treatment. 84% of people who took ruxolitinib and 75% of people who had the best available therapy lived for at least 3 years without their polycythemia vera becoming a more advanced type of blood cancer. The most common side effects were disorders of the digestive system (stomach and gut), disorders of the blood vessels, and infections. This is similar to the side effects that doctors know about for ruxolitinib. WHAT DO THE RESULTS MEAN?: Compared with people who had the best available therapy for their polycythemia vera, people who took ruxolitinib were more likely to have normal blood counts and spleen size within 1 year of treatment, and were more likely to live longer without their polycythemia vera becoming a more advanced type of blood cancer.

18.
Proc Natl Acad Sci U S A ; 117(7): 3718-3727, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32019891

RESUMEN

Developing B cells can be positively or negatively selected by self-antigens, but the mechanisms that determine these outcomes are incompletely understood. Here, we show that a B cell intrinsic switch between positive and negative selection during ontogeny is determined by a change from Lin28b to let-7 gene expression. Ectopic expression of a Lin28b transgene in murine B cells restored the positive selection of autoreactive B-1 B cells by self-antigen in adult bone marrow. Analysis of antigen-specific immature B cells in early and late ontogeny identified Lin28b-dependent genes associated with B-1 B cell development, including Arid3a and Bhleh41, and Lin28b-independent effects are associated with the presence or absence of self-antigen. These findings identify cell intrinsic and extrinsic determinants of B cell fate during ontogeny and reconcile lineage and selection theories of B cell development. They explain how changes in the balance of positive and negative selection may be able to adapt to meet the immunological needs of an individual during its lifetime.


Asunto(s)
Linfocitos B/inmunología , Proteínas de Unión al ARN/inmunología , Animales , Linfocitos B/citología , Proliferación Celular , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/inmunología , Proteínas de Unión al ARN/genética
19.
Cancer ; 128(13): 2420-2432, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35499819

RESUMEN

The development of targeted therapies for the treatment of myelofibrosis highlights a unique issue in a field that has historically relied on symptom relief, rather than survival benefit or modification of disease course, as key response criteria. There is, therefore, a need to understand what constitutes disease modification of myelofibrosis to advance appropriate drug development and therapeutic pathways. Here, the authors discuss recent clinical trial data of agents in development and dissect the potential for novel end points to act as disease modifying parameters. Using the rationale garnered from latest clinical and scientific evidence, the authors propose a definition of disease modification in myelofibrosis. With improved overall survival a critical outcome, alongside the normalization of hematopoiesis and improvement in bone marrow fibrosis, there will be an increasing need for surrogate measures of survival for use in the early stages of trials. As such, the design of future clinical trials will require re-evaluation and updating to incorporate informative parameters and end points with standardized definitions and methodologies.


Asunto(s)
Mielofibrosis Primaria , Progresión de la Enfermedad , Hematopoyesis , Humanos , Mielofibrosis Primaria/tratamiento farmacológico
20.
Future Oncol ; 18(27): 2987-2997, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35950489

RESUMEN

Myelofibrosis (MF) is a clonal myeloproliferative neoplasm, typically associated with disease-related symptoms, splenomegaly, cytopenias and bone marrow fibrosis. Patients experience a significant symptom burden and a reduced life expectancy. Patients with MF receive ruxolitinib as the current standard of care, but the depth and durability of responses and the percentage of patients achieving clinical outcome measures are limited; thus, a significant unmet medical need exists. Pelabresib is an investigational small-molecule bromodomain and extraterminal domain inhibitor currently in clinical development for MF. The aim of this article is to describe the design of the ongoing, global, phase III, double-blind, placebo-controlled MANIFEST-2 study evaluating the efficacy and safety of pelabresib and ruxolitinib versus placebo and ruxolitinib in patients with JAKi treatment-naive MF. Clinical Trial Registration: NCT04603495 (ClinicalTrials.gov).


Myelofibrosis (MF) is a rare type of blood cancer that interferes with the process of blood cell production by the bone marrow. In patients with MF, the bone marrow becomes overactive, leading to scarring and subsequently a lack of healthy blood cells being produced. The main symptoms of MF include anemia, fatigue, weakness and pain or discomfort in the abdomen. MF is associated with a shortened life expectancy. The current go-to treatment for MF is ruxolitinib. However, ruxolitinib has shown limited efficacy in improving clinical symptoms long term; so, new safe and effective treatments are needed. Pelabresib is a novel drug currently in clinical development for treating MF. The aim of this article is to describe the design of the ongoing, global phase III MANIFEST-2 study. MANIFEST-2 is evaluating the efficacy and safety of pelabresib and ruxolitinib versus placebo and ruxolitinib in patients with MF.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Mielofibrosis Primaria , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Ensayos Clínicos Fase III como Asunto , Humanos , Inhibidores de las Cinasas Janus/uso terapéutico , Nitrilos/uso terapéutico , Mielofibrosis Primaria/tratamiento farmacológico , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA