Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 288(8): 5530-8, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23235146

RESUMEN

As our understanding of what guides the behavior of multi- and pluripotent stem cells deepens, so too does our ability to utilize certain cues to manipulate their behavior and maximize their therapeutic potential. Engineered, biologically functionalized materials have the capacity to influence stem cell behavior through a powerful combination of biological, mechanical, and topographical cues. Here, we present the development of a novel electrospun scaffold, functionalized with glycosaminoglycans (GAGs) ionically immobilized onto the fiber surface. Bound GAGs retained the ability to interact with GAG-binding molecules and, crucially, presented GAG sulfation motifs fundamental to mediating stem cell behavior. Bound GAG proved to be biologically active, rescuing the neural differentiation capacity of heparan sulfate-deficient mouse embryonic stem cells and functioning in concert with FGF4 to facilitate the formation of extensive neural processes across the scaffold surface. The combination of GAGs with electrospun scaffolds creates a biomaterial with potent applicability for the propagation and effective differentiation of pluripotent stem cells.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Embrionarias/citología , Heparitina Sulfato/metabolismo , Alilamina/química , Animales , Materiales Biocompatibles/química , Diferenciación Celular , Células Cultivadas , Disacáridos/química , Epítopos/química , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Ratones Transgénicos , Oligosacáridos/química , Biblioteca de Péptidos , Polímeros/química , Regeneración , Medicina Regenerativa/métodos
2.
Biochem Soc Trans ; 42(3): 689-95, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24849238

RESUMEN

Differentiation and subsequent specialization of every cell within an organism is an intricate interwoven process. A complex network of signalling pathways eventually leads to the specification of a multitude of different cell types able to function co-operatively. HS (heparan sulfate) is a highly sulfated linear polysaccharide that resides at the pericellular cell-matrix interface where it dictates the binding and activity of a large number of proteins, including growth factors and morphogens such as members of the FGF (fibroblast growth factor) and BMP (bone morphogenetic protein) families. Embryonic stem cells derived from mice with mutations in components of the HS biosynthetic pathway provide an opportunity to dissect the contribution of HS to signalling pathways critical for regulating stem cell maintenance and differentiation. In addition to improving our understanding of signalling mechanisms, this knowledge enables the selection of exogenous HS saccharides to improve the efficiency and selectivity of directed differentiation protocols, offering a cost-effective alternative to high concentrations of expensive growth factors to drive differentiation towards a particular therapeutically relevant cell type.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/citología , Glicosaminoglicanos/fisiología , Animales , Diferenciación Celular/efectos de los fármacos , Desarrollo Embrionario , Glicosaminoglicanos/farmacología , Humanos , Ratones
3.
Biochem Soc Trans ; 39(1): 383-7, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21265809

RESUMEN

ES (embryonic stem) cell differentiation is dependent on the presence of HS (heparan sulfate). We have demonstrated that, during differentiation, the evolution of specific cell lineages is associated with particular patterns of GAG (glycosaminoglycan) expression. For example, different HS epitopes are synthesized during neural or mesodermal lineage formation. Cell lines mutant for various components of the HS biosynthetic pathway are selectively impaired in their differentiation, with lineage-specific effects observed for some lines. We have also observed that the addition of soluble GAG saccharides to cells, with or without cell-surface HS, can influence the pace and outcome of differentiation, again highlighting specific pattern requirements for particular lineages. We are combining this work with ongoing studies into the design of artificial cell environments where we have optimized three-dimensional scaffolds, generated by electrospinning or by the formation of hydrogels, for the culture of ES cells. By permeating these scaffolds with defined GAG oligosaccharides, we intend to control the mechanical environment of the cells (via the scaffold architecture) as well as their biological signalling environment (using the oligosaccharides). We predict that this will allow us to control ES cell pluripotency and differentiation in a three-dimensional setting, allowing the generation of differentiated cell types for use in drug discovery/testing or in therapeutics.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/fisiología , Glicosaminoglicanos/metabolismo , Animales , Conformación de Carbohidratos , Secuencia de Carbohidratos , Línea Celular , Linaje de la Célula , Glicosaminoglicanos/química , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Técnicas de Cultivo de Tejidos
4.
J Vis Exp ; (166)2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33346190

RESUMEN

There is a growing awareness that cells grown in 3D better model in vivo behavior than those grown in 2D. In this protocol, we describe a simple and tunable 3D hydrogel, suitable for culturing cells and tissue in a setting that matches their native environment. This is particularly important for researchers investigating the initiation, growth, and treatment of cancer where the interaction between cells and their local extracellular matrix is a fundamental part of the model. Moving to 3D culture can be challenging and is often associated with a lack of reproducibility due to high batch-to-batch variation in animal-derived 3D culture matrices. Similarly, handling issues can limit the usefulness of synthetic hydrogels. In response to this need, we have optimized a simple self-assembling peptide gel, to enable the culture of relevant cell line models of cancer and disease, as well as patient-derived tissue/cells. The gel itself is free from matrix components, apart from those added during encapsulation or deposited into the gel by the encapsulated cells. The mechanical properties of the hydrogels can also be altered independent of matrix addition. It, therefore, acts as a 'blank slate' allowing researchers to build a 3D culture environment that reflects the target tissue of interest and to dissect the influences of mechanical forces and/or biochemical control of cell behavior independently.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Hidrogeles/química , Modelos Biológicos , Neoplasias/patología , Péptidos/química , Animales , Muerte Celular , Supervivencia Celular , Matriz Extracelular/química , Células HCT116 , Humanos , Células MCF-7 , ARN/metabolismo , Reología , Coloración y Etiquetado
5.
Stem Cells ; 26(3): 666-74, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18192230

RESUMEN

We investigated Notch signaling during chondrogenesis in human bone marrow stromal cells (hMSC) in three-dimensional cell aggregate culture. Expression analysis of Notch pathway genes in 14-day chondrogenic cultures showed that the Notch ligand Jagged-1 (Jag-1) sharply increased in expression, peaking at day 2, and then declined. A Notch target gene, HEY-1, was also expressed, with a temporal profile that closely followed the expression of Jag-1, and this preceded the rise in type II collagen expression that characterized chondrogenesis. We demonstrated that the shut-down in Notch signaling was critical for full chondrogenesis, as adenoviral human Jag-1 transduction of hMSC, which caused continuous elevated expression of Jag-1 and sustained Notch signaling over 14 days, completely blocked chondrogenesis. In these cultures, there was inhibited production of extracellular matrix, and the gene expression of aggrecan and type II collagen were strongly suppressed; this may reflect the retention of a prechondrogenic state. The JAG-1-mediated Notch signaling was also shown to be necessary for chondrogenesis, as N-[N-(3,5-difluorophenacetyl-L-alanyl)]-(S)-phenylglycine t-butyl ester (DAPT) added to cultures on days 0-14 or just days 0-5 inhibited chondrogenesis, but DAPT added from day 5 did not. The results thus showed that Jag-1-mediated Notch signaling in hMSC was necessary to initiate chondrogenesis, but it must be switched off for chondrogenesis to proceed.


Asunto(s)
Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Proteínas de Unión al Calcio/metabolismo , Condrogénesis , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Células del Estroma/metabolismo , Células de la Médula Ósea/efectos de los fármacos , Proteínas de Unión al Calcio/genética , Agregación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Condrogénesis/efectos de los fármacos , Dipéptidos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína Jagged-1 , Ligandos , Proteínas de la Membrana/genética , Transporte de Proteínas/efectos de los fármacos , Receptores Notch/genética , Proteínas Serrate-Jagged , Transducción de Señal/efectos de los fármacos , Células del Estroma/citología , Células del Estroma/efectos de los fármacos , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA