Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Cell Physiol ; 236(4): 2893-2905, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32959895

RESUMEN

Acute lung injury (ALI) is an acute inflammatory process arises from a wide range of lung insults. A major cause of ALI is dysfunction of the pulmonary vascular endothelial barrier but the mechanisms involved are incompletely understood. The therapeutic potential of histone deacetylase (HDAC) inhibitors for the treatment of cardiovascular and inflammatory diseases is increasingly apparent, but the mechanisms by which HDACs regulate pulmonary vascular barrier function remain to be resolved. We found that specific Class IIa HDACs inhibitor, TMP269, significantly attenuated the lipopolysaccharide (LPS)-induced human lung microvascular endothelial cells (HLMVEC) barrier compromise in vitro and improved vascular barrier integrity and lung function in murine model of ALI in vivo. TMP269 decreased LPS-induced myosin light chain phosphorylation suggesting the role for Class IIa HDACs in LPS-induced cytoskeleton reorganization. TMP269 did not affect microtubule structure and tubulin acetylation in contrast to the HDAC6-specific inhibitor, Tubastatin A suggesting that Class IIa HDACs and HDAC6 (Class IIb) regulate endothelial cytoskeleton and permeability via different mechanisms. Furthermore, LPS increased the expression of ArgBP2 which has recently been attributed to HDAC-mediated activation of Rho. Depletion of ArgBP2 abolished the ability of LPS to disrupt barrier function in HLMVEC and both TMP269 and Tubastatin A decreased the level of ArgBP2 expression after LPS stimulation suggesting that both Class IIa and IIb HDACs regulate endothelial permeability via ArgBP2-dependent mechanism. Collectively, our data strongly suggest that Class IIa HDACs are involved in LPS-induced ALI in vitro and in vivo via specific mechanism which involved contractile responses, but not microtubule reorganization.


Asunto(s)
Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/enzimología , Histona Desacetilasas/metabolismo , Lesión Pulmonar Aguda/fisiopatología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Permeabilidad de la Membrana Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Endotoxinas , Frecuencia Cardíaca/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Lipopolisacáridos , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/fisiopatología , Ratones Endogámicos C57BL , Microvasos/patología , Modelos Biológicos , Oxígeno/metabolismo , Neumonía/complicaciones , Neumonía/patología , Transducción de Señal/efectos de los fármacos , Proteínas de Unión al GTP rho/metabolismo
2.
PLoS One ; 11(3): e0150480, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26937637

RESUMEN

There is increasing interest in the potential for metabolic profiling to evaluate the progression of pulmonary hypertension (PH). However, a detailed analysis of the metabolic changes in lungs at the early stage of PH, characterized by increased pulmonary artery pressure but prior to the development of right ventricle hypertrophy and failure, is lacking in a preclinical animal model of PH. Thus, we undertook a study using rats 14 days after exposure to monocrotaline (MCT), to determine whether we could identify early stage metabolic changes prior to the manifestation of developed PH. We observed changes in multiple pathways associated with the development of PH, including activated glycolysis, increased markers of proliferation, disruptions in carnitine homeostasis, increased inflammatory and fibrosis biomarkers, and a reduction in glutathione biosynthesis. Further, our global metabolic profile data compare favorably with prior work carried out in humans with PH. We conclude that despite the MCT-model not recapitulating all the structural changes associated with humans with advanced PH, including endothelial cell proliferation and the formation of plexiform lesions, it is very similar at a metabolic level. Thus, we suggest that despite its limitations it can still serve as a useful preclinical model for the study of PH.


Asunto(s)
Hipertensión Pulmonar/metabolismo , Hipertrofia Ventricular Derecha/metabolismo , Pulmón/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Metaboloma/efectos de los fármacos , Monocrotalina/toxicidad , Animales , Presión Sanguínea , Carnitina/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Glutatión/antagonistas & inhibidores , Glutatión/biosíntesis , Humanos , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/inducido químicamente , Hipertrofia Ventricular Derecha/fisiopatología , Pulmón/efectos de los fármacos , Pulmón/fisiopatología , Masculino , Monocrotalina/administración & dosificación , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA