Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Hum Mol Genet ; 32(12): 1959-1974, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36790128

RESUMEN

Facial dysmorphology is a hallmark of 22q11.2 deletion syndrome (22q11DS). Nearly all affected individuals have facial features characteristic of the syndrome: a vertically long face with broad nasal bridge, narrow palpebral fissures and mild micrognathia, sometimes accompanied by facial skeletal and oropharyngeal anomalies. Despite the frequency of craniofacial dysmorphology due to 22q11.2 deletion, there is still incomplete understanding of the contribution of individual 22q11 genes to craniofacial and oropharyngeal development. We asked whether homozygous or heterozygous loss of function of single 22q11 genes compromises craniofacial and/or oropharyngeal morphogenesis related to these 22q11DS phenotypes. We found that Ranbp1, a 22q11DS gene that mediates nucleocytoplasmic protein trafficking, is a dosage-dependent modulator of craniofacial development. Ranbp1-/- embryos have variably penetrant facial phenotypes, including altered facial morphology and cleft palate. This 22q11DS-related dysmorphology is particularly evident in the midline of the facial skeleton, as evidenced by a robustly quantifiable dysmorphology of the vomer, an unpaired facial midline bone. 22q11DS-related oropharyngeal phenotypes reflect Ranbp1 function in both the cranial neural crest and cranial ectoderm based upon tissue-selective Ranbp1 deletion. Analyses of genetic interaction show that Ranbp1 mutation disrupts BMP signaling-dependent midline gene expression and BMP-mediated craniofacial and cranial skeletal morphogenesis. Finally, midline defects that parallel those in Ranbp1 mutant mice are observed at similar frequencies in the LgDel 22q112DS mouse model. Apparently, Ranbp1 is a modulator of craniofacial development, and in the context of broader 22q11 deletion, Ranbp1 mutant phenotypes mirror key aspects of 22q11DS midline facial anomalies.


Asunto(s)
Síndrome de DiGeorge , Animales , Ratones , Síndrome de DiGeorge/genética , Morfogénesis/genética , Modelos Animales de Enfermedad , Fenotipo , Cresta Neural
2.
Dev Neurosci ; 46(1): 1-21, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37231803

RESUMEN

The genesis of a mature complement of neurons is thought to require, at least in part, precursor cell lineages in which neural progenitors have distinct identities recognized by exclusive expression of one or a few molecular markers. Nevertheless, limited progenitor types distinguished by specific markers and lineal progression through such subclasses cannot easily yield the magnitude of neuronal diversity in most regions of the nervous system. The late Verne Caviness, to whom this edition of Developmental Neuroscience is dedicated, recognized this mismatch. In his pioneering work on the histogenesis of the cerebral cortex, he acknowledged the additional flexibility required to generate multiple classes of cortical projection and interneurons. This flexibility may be accomplished by establishing cell states in which levels rather than binary expression or repression of individual genes vary across each progenitor's shared transcriptome. Such states may reflect local, stochastic signaling via soluble factors or coincidence of cell surface ligand/receptor pairs in subsets of neighboring progenitors. This probabilistic, rather than determined, signaling could modify transcription levels via multiple pathways within an apparently uniform population of progenitors. Progenitor states, therefore, rather than lineal relationships between types may underlie the generation of neuronal diversity in most regions of the nervous system. Moreover, mechanisms that influence variation required for flexible progenitor states may be targets for pathological changes in a broad range of neurodevelopmental disorders, especially those with polygenic origins.


Asunto(s)
Trastornos del Neurodesarrollo , Neuronas , Masculino , Humanos , Neuronas/metabolismo , Corteza Cerebral/metabolismo , Linaje de la Célula/fisiología , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Transducción de Señal , Neurogénesis/fisiología , Diferenciación Celular/fisiología
3.
Cereb Cortex ; 25(10): 3977-93, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25452572

RESUMEN

Ranbp1, a Ran GTPase-binding protein implicated in nuclear/cytoplasmic trafficking, is included within the DiGeorge/22q11.2 Deletion Syndrome (22q11.2 DS) critical region associated with behavioral impairments including autism and schizophrenia. Ranbp1 is highly expressed in the developing forebrain ventricular/subventricular zone but has no known obligate function during brain development. We assessed the role of Ranbp1 in a targeted mouse mutant. Ranbp1(-/-) mice are not recovered live at birth, and over 60% of Ranbp1(-/-) embryos are exencephalic. Non-exencephalic Ranbp1(-/-) embryos are microcephalic, and proliferation of cortical progenitors is altered. At E10.5, radial progenitors divide more slowly in the Ranpb1(-/-) dorsal pallium. At E14.5, basal, but not apical/radial glial progenitors, are compromised in the cortex. In both E10.5 apical and E14.5 basal progenitors, M phase of the cell cycle appears selectively retarded by loss of Ranpb1 function. Ranbp1(-/-)-dependent proliferative deficits substantially diminish the frequency of layer 2/3, but not layer 5/6 cortical projection neurons. Ranbp1(-/-) cortical phenotypes parallel less severe alterations in LgDel mice that carry a deletion parallel to many (but not all) 22q11.2 DS patients. Thus, Ranbp1 emerges as a microcephaly gene within the 22q11.2 deleted region that may contribute to altered cortical precursor proliferation and neurogenesis associated with broader 22q11.2 deletion.


Asunto(s)
Corteza Cerebral/embriología , Síndrome de DiGeorge/embriología , Síndrome de DiGeorge/genética , Microcefalia/genética , Células-Madre Neurales/fisiología , Neurogénesis/genética , Proteínas Nucleares/fisiología , Animales , Polaridad Celular , Proliferación Celular/genética , Corteza Cerebral/fisiopatología , Síndrome de DiGeorge/fisiopatología , Ventrículos Laterales/embriología , Ventrículos Laterales/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Neuroepiteliales/fisiología , Proteínas Nucleares/genética
4.
J Neurosci ; 34(23): 7787-801, 2014 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-24899703

RESUMEN

Proper assembly of cortical circuitry relies on the correct migration of cortical interneurons from their place of birth in the ganglionic eminences to their place of terminal differentiation in the cerebral cortex. Although molecular mechanisms mediating cortical interneuron migration have been well studied, intracellular signals directing their migration are largely unknown. Here we illustrate a novel and essential role for c-Jun N-terminal kinase (JNK) signaling in guiding the pioneering population of cortical interneurons into the mouse cerebral cortex. Migrating cortical interneurons express Jnk proteins at the entrance to the cortical rudiment and have enriched expression of Jnk1 relative to noninterneuronal cortical cells. Pharmacological blockade of JNK signaling in ex vivo slice cultures resulted in dose-dependent and highly specific disruption of interneuron migration into the nascent cortex. Time-lapse imaging revealed that JNK-inhibited cortical interneurons advanced slowly and assumed aberrant migratory trajectories while traversing the cortical entry zone. In vivo analyses of JNK-deficient embryos supported our ex vivo pharmacological data. Deficits in interneuron migration were observed in Jnk1 but not Jnk2 single nulls, and those migratory deficits were further exacerbated when homozygous loss of Jnk1 was combined with heterozygous reduction of Jnk2. Finally, genetic ablation of Jnk1 and Jnk2 from cortical interneurons significantly perturbed migration in vivo, but not in vitro, suggesting JNK activity functions to direct their guidance rather than enhance their motility. These data suggest JNK signaling, predominantly mediated by interneuron expressed Jnk1, is required for guiding migration of cortical interneurons into and within the developing cerebral cortex.


Asunto(s)
Corteza Cerebral/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Interneuronas/fisiología , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Animales , Animales Recién Nacidos , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína Quinasa 9 Activada por Mitógenos/genética , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Técnicas de Cultivo de Órganos , Embarazo , Factores de Tiempo
5.
Hum Mol Genet ; 22(2): 300-12, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23077214

RESUMEN

We asked whether key morphogenetic signaling pathways interact with 22q11 gene dosage to modulate the severity of cranial or cardiac anomalies in DiGeorge/22q1 deletion syndrome (22q11DS). Sonic hedgehog (Shh) and retinoic acid (RA) signaling is altered in the brain and heart-clinically significant 22q11DS phenotypic sites-in LgDel mouse embryos, an established 22q11DS model. LgDel embryos treated with cyclopamine, an Shh inhibitor, or carrying mutations in Gli3(Xtj), an Shh-signaling effector, have morphogenetic anomalies that are either not seen, or seen at significantly lower frequencies in control or single-mutant embryos. Similarly, RA exposure or genetic loss of RA function via heterozygous mutation of the RA synthetic enzyme Raldh2 induces novel cranial anomalies and enhances cardiovascular phenotypes in LgDel but not other genotypes. These changes are not seen in heterozygous Tbx1 mutant embryos-a 22q11 gene thought to explain much of 22q11DS pathogenesis-in which Shh or RA signaling has been similarly modified. Our results suggest that full dosage of 22q11 genes beyond Tbx1 establish an adaptive range for morphogenetic signaling via Shh and RA. When this adaptive range is constricted by diminished dosage of 22q11 genes, embryos are sensitized to otherwise benign changes in Shh and RA signaling. Such sensitization, in the face of environmental or genetic factors that modify Shh or RA signaling, may explain variability in 22q11DS morphogenetic phenotypes.


Asunto(s)
Adaptación Biológica , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/metabolismo , Dosificación de Gen , Proteínas Hedgehog/metabolismo , Transducción de Señal , Tretinoina/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Morfogénesis/genética , Tubo Neural/embriología , Tubo Neural/metabolismo , Fenotipo
6.
Proc Natl Acad Sci U S A ; 109(45): 18601-6, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23091025

RESUMEN

Interneurons are thought to be a primary pathogenic target for several behavioral disorders that arise during development, including schizophrenia and autism. It is not known, however, whether genetic lesions associated with these diseases disrupt established molecular mechanisms of interneuron development. We found that diminished 22q11.2 gene dosage-the primary genetic lesion in 22q11.2 deletion syndrome (22q11.2 DS)-specifically compromises the distribution of early-generated parvalbumin-expressing interneurons in the Large Deletion (LgDel) 22q11.2DS mouse model. This change reflects cell-autonomous disruption of interneuron migration caused by altered expression of the cytokine C-X-C chemokine receptor type 4 (Cxcr4), an established regulator of this process. Cxcr4 is specifically reduced in LgDel migrating interneurons, and genetic analysis confirms that diminished Cxcr4 alters interneuron migration in LgDel mice. Thus, diminished 22q11.2 gene dosage disrupts cortical circuit development by modifying a critical molecular signaling pathway via Cxcr4 that regulates cortical interneuron migration and placement.


Asunto(s)
Movimiento Celular/genética , Síndrome de DiGeorge/metabolismo , Síndrome de DiGeorge/patología , Interneuronas/metabolismo , Interneuronas/patología , Receptores CXCR4/metabolismo , Animales , Corteza Cerebral/embriología , Corteza Cerebral/patología , Heterocigoto , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Parvalbúminas/metabolismo
7.
Proc Natl Acad Sci U S A ; 106(38): 16434-45, 2009 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-19805316

RESUMEN

The 22q11 deletion (or DiGeorge) syndrome (22q11DS), the result of a 1.5- to 3-megabase hemizygous deletion on human chromosome 22, results in dramatically increased susceptibility for "diseases of cortical connectivity" thought to arise during development, including schizophrenia and autism. We show that diminished dosage of the genes deleted in the 1.5-megabase 22q11 minimal critical deleted region in a mouse model of 22q11DS specifically compromises neurogenesis and subsequent differentiation in the cerebral cortex. Proliferation of basal, but not apical, progenitors is disrupted, and subsequently, the frequency of layer 2/3, but not layer 5/6, projection neurons is altered. This change is paralleled by aberrant distribution of parvalbumin-labeled interneurons in upper and lower cortical layers. Deletion of Tbx1 or Prodh (22q11 genes independently associated with 22q11DS phenotypes) does not similarly disrupt basal progenitors. However, expression analysis implicates additional 22q11 genes that are selectively expressed in cortical precursors. Thus, diminished 22q11 gene dosage disrupts cortical neurogenesis and interneuron migration. Such developmental disruption may alter cortical circuitry and establish vulnerability for developmental disorders, including schizophrenia and autism.


Asunto(s)
Corteza Cerebral/metabolismo , Deleción Cromosómica , Cromosomas Humanos Par 21/genética , Cromosomas de los Mamíferos/genética , Síndrome de DiGeorge/genética , Animales , Proteínas de Ciclo Celular/genética , Diferenciación Celular , Proliferación Celular , Corteza Cerebral/citología , Corteza Cerebral/embriología , Ciclina D1/genética , Síndrome de DiGeorge/embriología , Síndrome de DiGeorge/patología , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfoproteínas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sintenía , Proteínas de Dominio T Box/genética
8.
Neuron ; 102(6): 1127-1142.e3, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31079872

RESUMEN

Under-connectivity between cerebral cortical association areas may underlie cognitive deficits in neurodevelopmental disorders, including the 22q11.2 deletion syndrome (22q11DS). Using the LgDel 22q11DS mouse model, we assessed cellular, molecular, and developmental origins of under-connectivity and its consequences for cognitive function. Diminished 22q11 gene dosage reduces long-distance projections, limits axon and dendrite growth, and disrupts mitochondrial and synaptic integrity in layer 2/3 but not 5/6 projection neurons (PNs). Diminished dosage of Txnrd2, a 22q11 gene essential for reactive oxygen species catabolism in brain mitochondria, recapitulates these deficits in WT layer 2/3 PNs; Txnrd2 re-expression in LgDel layer 2/3 PNs rescues them. Anti-oxidants reverse LgDel- or Txnrd2-related layer 2/3 mitochondrial, circuit, and cognitive deficits. Accordingly, Txnrd2-mediated oxidative stress reduces layer 2/3 connectivity and impairs cognition in the context of 22q11 deletion. Anti-oxidant restoration of mitochondrial integrity, cortical connectivity, and cognitive behavior defines oxidative stress as a therapeutic target in neurodevelopmental disorders.


Asunto(s)
Corteza Cerebral/metabolismo , Disfunción Cognitiva/genética , Síndrome de DiGeorge/genética , Mitocondrias/metabolismo , Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxina Reductasa 2/genética , Animales , Axones/ultraestructura , Conducta Animal , Corteza Cerebral/citología , Dendritas/ultraestructura , Modelos Animales de Enfermedad , Corteza Entorrinal/metabolismo , Lóbulo Frontal/metabolismo , Dosificación de Gen , Ratones , Mitocondrias/ultraestructura , Vías Nerviosas , Neuronas/ultraestructura , Sinapsis/metabolismo , Sinapsis/ultraestructura
9.
Prog Neurobiol ; 130: 1-28, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25866365

RESUMEN

Understanding the developmental etiology of autistic spectrum disorders, attention deficit/hyperactivity disorder and schizophrenia remains a major challenge for establishing new diagnostic and therapeutic approaches to these common, difficult-to-treat diseases that compromise neural circuits in the cerebral cortex. One aspect of this challenge is the breadth and overlap of ASD, ADHD, and SCZ deficits; another is the complexity of mutations associated with each, and a third is the difficulty of analyzing disrupted development in at-risk or affected human fetuses. The identification of distinct genetic syndromes that include behavioral deficits similar to those in ASD, ADHC and SCZ provides a critical starting point for meeting this challenge. We summarize clinical and behavioral impairments in children and adults with one such genetic syndrome, the 22q11.2 Deletion Syndrome, routinely called 22q11DS, caused by micro-deletions of between 1.5 and 3.0 MB on human chromosome 22. Among many syndromic features, including cardiovascular and craniofacial anomalies, 22q11DS patients have a high incidence of brain structural, functional, and behavioral deficits that reflect cerebral cortical dysfunction and fall within the spectrum that defines ASD, ADHD, and SCZ. We show that developmental pathogenesis underlying this apparent genetic "model" syndrome in patients can be defined and analyzed mechanistically using genomically accurate mouse models of the deletion that causes 22q11DS. We conclude that "modeling a model", in this case 22q11DS as a model for idiopathic ASD, ADHD and SCZ, as well as other behavioral disorders like anxiety frequently seen in 22q11DS patients, in genetically engineered mice provides a foundation for understanding the causes and improving diagnosis and therapy for these disorders of cortical circuit development.


Asunto(s)
Cromosomas Humanos Par 22/genética , Síndrome de DiGeorge/genética , Predisposición Genética a la Enfermedad/genética , Ratones , Animales , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Humanos , Esquizofrenia/genética
10.
Mamm Genome ; 17(8): 822-32, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16897343

RESUMEN

Non-Mendelian factors may influence central nervous system (CNS) phenotypes in patients with 22q11 Deletion Syndrome (22q11DS, also known as DiGeorge or Velocardiofacial Syndrome), and similar mechanisms may operate in mice carrying a deletion of one or more 22q11 gene orthologs. Accordingly, we examined the influence of parent of origin on expression of 25 murine 22q11 orthologs in the developing and mature CNS using single nucleotide polymorphism (SNP)-based analysis in interspecific crosses and quantification of mRNA in a murine model of 22q11DS. We found no evidence for absolute genomic imprinting or silencing. All 25 genes are biallelically expressed in the developing and adult brains. Furthermore, if more subtle forms of allelic biasing are present, they are very small in magnitude and most likely beyond the resolution of currently available quantitative approaches. Given the high degree of similarity of human 22q11 and the orthologous region of mmChr16, genomic imprinting most likely cannot explain apparent parent-of-origin effects in 22q11DS.


Asunto(s)
Síndrome de DiGeorge/genética , Impresión Genómica/genética , Alelos , Animales , Cruzamientos Genéticos , Femenino , Eliminación de Gen , Expresión Génica , Silenciador del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Polimorfismo de Nucleótido Simple , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA