Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Langmuir ; 39(49): 17733-17744, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38012063

RESUMEN

Thermal heating of polydispersed nanocrystals (NCs) with surface-active organic ligands in a solvent leads to the formation of monodispersed NCs, and this process is known as digestive ripening (DR). Here, by performing DR on Au NCs using different-chain-length amine and thiol ligands, we evidently show that ligands with C12 chain length result in the formation of NCs with narrow size distributions when compared to C8, C16, and C20 chain length ligands. Furthermore, our findings also show that in the case of alkyl thiol, the NC size remains more or less the same, while the size distribution gets altered significantly with the chain length. On the other hand, both size and size distribution are affected significantly when the alkyl amine chain length is varied. Fourier transform infrared (FTIR) studies indicate that the van der Waals (vdW) interactions are weakest when the amine with C12 carbon chain is used as the DR agent, while in the case of thiols, molecules with C8 and C12 chain lengths have nearly the same vdW interactions (with C12 slightly weaker than C8), which are weaker than those of C16 and C20. Molecular dynamics (MD) simulation results corroborate the experimental observations and suggest that due to more defects in the alkyl chain, the C8 and C12 (amine as well as thiol) ligands are disordered and less stable on Au(111) and Au(100) surfaces. This could result in efficient etching and redeposition, making the ligands with C8 and C12 chain lengths the better DR agents.

2.
J Am Chem Soc ; 140(4): 1348-1357, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29268603

RESUMEN

Postsynthetic strategies for modifying metal-organic frameworks (MOFs) have proven to be an incredibly powerful approach for expanding the scope and functionality of these materials. Previously, we reported on the postsynthetic exchange (PSE) of metal ions and ligands in the University of Oslo (UiO) series of MOFs. Detailed characterization by several analytical methods, most notably inductively coupled plasma mass spectrometry and transmission electron microscopy reveal that metal ion deposition on the surface of these MOFs occurs in the form of nanoscale metal oxides, rather than yielding exchanged metal sites within the MOFs, as was previously reported. By contrast, these combined analytical methods do confirm that ligand-based PSE can occur in these MOFs. These findings provide new insight into the postsynthetic manipulation of MOF materials, highlight the importance of rigorously characterizing these materials to correctly assign their composition and structure, and provide a new route to making hybrid solids with a MOF@metal oxide architecture.


Asunto(s)
Estructuras Metalorgánicas/química , Óxidos/química , Circonio/química , Ligandos , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Propiedades de Superficie
3.
Phys Chem Chem Phys ; 18(19): 13246-54, 2016 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-27118188

RESUMEN

We provide a microscopic view of the role of halides in controlling the anisotropic growth of gold nanorods through a combined computational and experimental study. Atomistic molecular dynamics simulations unveil that Br(-) adsorption is not only responsible for surface passivation, but also acts as the driving force for CTAB micelle adsorption and stabilization on the gold surface in a facet-dependent way. The partial replacement of Br(-) by Cl(-) decreases the difference between facets and the surfactant density. Finally, in the CTAC solution, no halides or micellar structures protect the gold surface and further gold reduction should be uniformly possible. Experimentally observed nanoparticle's growth in different CTAB/CTAC mixtures is more uniform and faster as the amount of Cl(-) increases, confirming the picture from the simulations. In addition, the surfactant layer thickness measured on nanorods exposed to CTAB and CTAC quantitatively agrees with the simulation results.

4.
Angew Chem Int Ed Engl ; 55(39): 11960-4, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27560039

RESUMEN

Directly manipulating and controlling the size and shape of metal nanoparticles is a key step for their tailored applications. In this work, molecular dynamics simulations were applied to understand the microscopic origin of the asymmetric growth mechanism in gold nanorods. Different factors influencing the growth were selectively included in the models to unravel the role of the surfactants and ions. In the early stage of the growth, when the seed is only a few nanometers large, a dramatic symmetry breaking occurs as the surfactant layer preferentially covers the (100) and (110) facets, leaving the (111) facets unprotected. This anisotropic surfactant layer in turn promotes anisotropic growth with the less protected tips growing faster. When silver salt is added to the growth solution, the asymmetry of the facets is preserved, but the Br(-) concentration at the interface increases, resulting in increased surface passivation.

5.
Langmuir ; 29(48): 14954-61, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24224887

RESUMEN

We use molecular dynamics simulations in order to understand the microscopic origin of the asymmetric growth mechanism in gold nanorods. We provide the first atomistic model of different surfaces on gold nanoparticles in a growing electrolyte solution, and we describe the interaction of the metal with the surfactants, namely, cetyltrimethylammonium bromide (CTAB) and the ions. An innovative aspect is the inclusion of the role of the surfactants, which are explicitly modeled. We find that on all the investigated surfaces, namely, (111), (110), and (100), CTAB forms a layer of distorted cylindrical micelles where channels among micelles provide direct ion access to the surface. In particular, we show how AuCl2(-) ions, which are found in the growth solution, can freely diffuse from the bulk solution to the gold surface. We also find that the (111) surface exhibits a higher CTAB packing density and a higher electrostatic potential. Both elements would favor the growth of gold nanoparticles along the (111) direction. These findings are in agreement with the growth mechanisms proposed by the experimental groups of Murphy and Mulvaney.

6.
Macromol Biosci ; 23(11): e2300091, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37357814

RESUMEN

Counterfeited biomedical products result in significant economic losses and pose a public health hazard for over a million people yearly. Hydrogels, a class of biomedical products, are being investigated as alternatives to conventional biomedical products and are equally susceptible to counterfeiting. Here, a biocompatible, physically unclonable function (BPUF) to verify the authenticity of therapeutically relevant hydrogels are developed. The principle of BPUF relies on the self-assembly of tyrosine into fibril-like structures which are incorporated into therapeutically relevant hydrogels resulting in their random dispersion. This unclonable arrangement leads to distinctive optical micrographs captured using an optical microscope. These optical micrographs are transformed into a unique security code through cryptographic techniques which are then used to authenticate the hydrogel. The temporal stability of the BPUFs are demonstrated and additionally, exploit the dissolution propensity of the structures upon exposure to an adulterant to identify the tampering of the hydrogel. Finally, a platform to demonstrate the translational potential of this technology in validating and detecting tampering of therapeutically relevant hydrogels is developed. The potential of BPUFs to combat hydrogel counterfeiting is exemplified by its simplicity in production, ease of use, biocompatibility, and cost-effectiveness.


Asunto(s)
Aminoácidos , Hidrogeles , Humanos , Hidrogeles/química , Tirosina
7.
J Chem Theory Comput ; 19(17): 5938-5957, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37641958

RESUMEN

A quantum-classical protocol that incorporates Jahn-Teller vibronic coupling effects and cluster analysis of molecular dynamics simulations is reported, providing a tool for simulations of absorption spectra and ultrafast nonadiabatic dynamics in large molecular photosystems undergoing aggregation in solution. Employing zinc phthalocyanine dyes as target systems, we demonstrated that the proposed protocol provided fundamental information on vibronic, electronic couplings and thermal dynamical effects that mostly contribute to the absorption spectra lineshape and the fluorescence quenching processes upon dye aggregation. Decomposing the various effects arising upon dimer formation, the structure-property relations associated with their optical responses have been deciphered at atomistic resolution.

8.
Nanoscale ; 13(46): 19549-19560, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34806728

RESUMEN

Shape modulation of nanoparticles is crucial for their tailored applications; however, it depends on surfactants, ions, reactants, and other additives present in the growth solution. Here we dissect the role of surfactants, their counterions (halide ions), silver ions, and gold reactant in gold nanoparticle anisotropic growth using polarizable surfaces and nanoseed molecular dynamics simulation models. Our planar surface models predict a 14%-16% increment in cetyltrimethylammonium bromide (CTAB) coverage on Au(111) and Au(100) due to the surface polarization effect. The CTAB micelle adsorbs compactly similar to that observed on non-polarizable surfaces. The cetyltrimethylammonium chloride (CTAC) micelle remains in solution leaving the polarizable gold surfaces unprotected, similar to that observed with the non-polarizable surfaces, which favors isotropic growth. The cetyltrimethylammonium iodide (CTAI) micelle adsorbs with higher surface densities than CTAB on all the surfaces. The surface polarizable penta-twinned nanoseed model predicts the total surface coverage of the cetyltrimethylammonium cation (CTA+), Br- and Ag+ to be around two times higher on the side as compared to the tip of the nanoseed, leading to a 2.6 times higher initial rate of adsorption of AuCl2- on the tip than on the side. Predicted CTA+ surface densities on the tip and the side of the nanoseed are consistent with experimental results. Our simulations explain the growth mechanism of anisotropic nanoparticles and the microscopic origin of their controlled shapes.

9.
Nanoscale ; 13(36): 15292-15300, 2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34486622

RESUMEN

We elucidate the crucial role of the cetyl trimethylammonium bromide (CTAB) surfactant in the anisotropic growth mechanism of gold nano-bipyramids, nano-objects with remarkable optical properties and high tunability. Atomistic molecular dynamics simulations predict different surface coverages of the CTAB (positively charged) heads and their (bromide) counterions as function of the gold exposed surfaces. High concentration of CTAB surfactant promotes formation of gold nanograins in solution that work as precursors for the smooth anisotropic growth of more elongated nano-bipyramidal objects. Nanobipyramids feature higher index facets with respect to nanorods, allowing higher CTAB coverages that stabilize their formation and leading to narrower inter-micelles channels that smooth down their anisotropic growth. Absorption spectroscopy and scanning electron microscopy confirmed the formation of nanograins and demonstrated the importance of surfactant concentration on driving the growth towards nano-bipyramids rather than nanorods. The outcome explains the formation of the monodisperse bipyramidal nano-objects, the origin of their controlled shapes and sizes along with their remarkable stability.

10.
ACS Nano ; 11(7): 7371-7381, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28613838

RESUMEN

Nanophase segregation of a bicomponent thiol self-assembled monolayer is predicted using atomistic molecular dynamics simulations and experimentally confirmed. The simulations suggest the formation of domains rich in acid-terminated chains, on one hand, and of domains rich in amide-functionalized ethylene glycol oligomers, on the other hand. In particular, within the amide-ethylene glycol oligomers region, a key role is played by the formation of interchain hydrogen bonds. The predicted phase segregation is experimentally confirmed by the synthesis of 35 and 15 nm gold nanoparticles functionalized with several binary mixtures of ligands. An extensive study by transmission electron microscopy and electron tomography, using silica selective heterogeneous nucleation on acid-rich domains to provide electron contrast, supports simulations and highlights patchy nanoparticles with a trend toward Janus nano-objects depending on the nature of the ligands and the particle size. These results validate our computational platform as an effective tool to predict nanophase separation in organic mixtures on a surface and drive further exploration of advanced nanoparticle functionalization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA