Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 296: 100227, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33361158

RESUMEN

Mutations in voltage-gated sodium channels (Navs) can cause alterations in pain sensation, such as chronic pain diseases like inherited erythromelalgia. The mutation causing inherited erythromelalgia, Nav1.7 p.I848T, is known to induce a hyperpolarized shift in the voltage dependence of activation in Nav1.7. So far, however, the mechanism to explain this increase in voltage sensitivity remains unknown. In the present study, we show that phosphorylation of the newly introduced Thr residue explains the functional change. We expressed wildtype human Nav1.7, the I848T mutant, or other mutations in HEK293T cells and performed whole-cell patch-clamp electrophysiology. As the insertion of a Thr residue potentially creates a novel phosphorylation site for Ser/Thr kinases and because Nav1.7 had been shown in Xenopus oocytes to be affected by protein kinases C and A, we used different nonselective and selective kinase inhibitors and activators to test the effect of phosphorylation on Nav1.7 in a human system. We identify protein kinase C, but not protein kinase A, to be responsible for the phosphorylation of T848 and thereby for the shift in voltage sensitivity. Introducing a negatively charged amino acid instead of the putative phosphorylation site mimics the effect on voltage gating to a lesser extent. 3D modeling using the published cryo-EM structure of human Nav1.7 showed that introduction of this negatively charged site seems to alter the interaction of this residue with the surrounding amino acids and thus to influence channel function. These results could provide new opportunities for the development of novel treatment options for patients with chronic pain.


Asunto(s)
Potenciales de la Membrana/fisiología , Canal de Sodio Activado por Voltaje NAV1.7/química , Proteína Quinasa C/metabolismo , Procesamiento Proteico-Postraduccional , Treonina/química , Sustitución de Aminoácidos , Sitios de Unión , Dolor Crónico/genética , Dolor Crónico/metabolismo , Dolor Crónico/fisiopatología , Eritromelalgia/genética , Eritromelalgia/metabolismo , Eritromelalgia/fisiopatología , Expresión Génica , Células HEK293 , Humanos , Activación del Canal Iónico/fisiología , Isoleucina/química , Isoleucina/metabolismo , Modelos Moleculares , Mutación , Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Técnicas de Placa-Clamp , Fosforilación/efectos de los fármacos , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estaurosporina/farmacología , Treonina/metabolismo
2.
Toxicol Appl Pharmacol ; 397: 115010, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32302602

RESUMEN

Voltage-gated sodium channels are responsible not only for the fast upstroke of the action potential, but they also modify cellular excitability via persistent and resurgent currents. Insecticides act via permanently opening sodium channels to immobilize the animals. Cellular recordings performed decades ago revealed distinctly hooked tail currents induced by these compounds. Here, we applied the classical type-II pyrethroid deltamethrin on human cardiac Nav1.5 and observed resurgent-like currents at very negative potentials in the absence of any pore-blocker, which resemble those hooked tail currents. We show that deltamethrin dramatically slows both fast inactivation and deactivation of Nav1.5 and thereby induces large persistent currents. Using the sea anemone toxin ATx-II as a tool to prevent all inactivation-related processes, resurgent-like currents were eliminated while persistent currents were preserved. Our experiments suggest that, in deltamethrin-modified channels, recovery from inactivation occurs faster than delayed deactivation, opening a brief window for sodium influx and leading to hooked, resurgent-like currents, in the absence of an open channel blocker. Thus, we now explain with pharmacological methods the biophysical gating changes underlying the deltamethrin induced hooked tail currents. SUMMARY: The pyrethroid deltamethrin induces hooked resurgent-like tail currents in human cardiac voltage-gated Nav1.5 channels. Using deltamethrin and ATx-II, we identify additional conducting channel states caused by a faster recovery from inactivation compared to the deltamethrin-induced delayed deactivation.

3.
J Neurophysiol ; 121(2): 427-443, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30485151

RESUMEN

The transient receptor potential ankyrin 1 (TRPA1) ion channel is expressed in pain-sensing neurons and other tissues and has become a major target in the development of novel pharmaceuticals. A remarkable feature of the channel is its long list of activators, many of which we are exposed to in daily life. Many of these agonists induce pain and inflammation, making TRPA1 a major target for anti-inflammatory and analgesic therapies. Studies in human patients and in experimental animals have confirmed an important role for TRPA1 in a number of pain conditions. Over the recent years, much progress has been made in elucidating the molecular structure of TRPA1 and in discovering binding sites and modulatory sites of the channel. Because the list of published mutations and important molecular sites is steadily growing and because it has become difficult to see the forest for the trees, this review aims at summarizing the current knowledge about TRPA1, with a special focus on the molecular structure and the known binding or gating sites of the channel.


Asunto(s)
Canal Catiónico TRPA1/metabolismo , Animales , Humanos , Activación del Canal Iónico , Canal Catiónico TRPA1/química , Canal Catiónico TRPA1/genética
4.
Int J Mol Sci ; 20(18)2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31540178

RESUMEN

Ion channels contribute fundamental properties to cell membranes. Although highly diverse in conductivity, structure, location, and function, many of them can be regulated by common mechanisms, such as voltage or (de-)phosphorylation. Primarily considering ion channels involved in the nociceptive system, this review covers more novel and less known features. Accordingly, we outline noncanonical operation of voltage-gated sodium, potassium, transient receptor potential (TRP), and hyperpolarization-activated cyclic nucleotide (HCN)-gated channels. Noncanonical features discussed include properties as a memory for prior voltage and chemical exposure, alternative ion conduction pathways, cluster formation, and silent subunits. Complementary to this main focus, the intention is also to transfer knowledge between fields, which become inevitably more separate due to their size.


Asunto(s)
Canales Iónicos/metabolismo , Dolor/etiología , Dolor/metabolismo , Animales , Susceptibilidad a Enfermedades , Descubrimiento de Drogas , Humanos , Activación del Canal Iónico , Canales Iónicos/química , Canales Iónicos/genética , Dolor/tratamiento farmacológico
5.
J Physiol ; 596(12): 2433-2445, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29659026

RESUMEN

KEY POINTS: The voltage-gated sodium channel Nav1.7 is a key player in neuronal excitability and pain signalling. In addition to voltage sensing, the channel is also modulated by mechanical stress. Using whole-cell patch-clamp experiments, we discovered that the sodium channel subunit ß1 is able to prevent the impact of mechanical stress on Nav1.7. An intramolecular disulfide bond of ß1 was identified to be essential for stabilisation of inactivation, but not activation, against mechanical stress using molecular dynamics simulations, homology modelling and site-directed mutagenesis. Our results highlight the role of segment 6 of domain IV in fast inactivation. We present a candidate mechanism for sodium channel stabilisation against mechanical stress, ensuring reliable channel functionality in living systems. ABSTRACT: Voltage-gated sodium channels are key players in neuronal excitability and pain signalling. Precise gating of these channels is crucial as even small functional alterations can lead to pathological phenotypes such as pain or heart failure. Mechanical stress has been shown to affect sodium channel activation and inactivation. This suggests that stabilising components are necessary to ensure precise channel gating in living organisms. Here, we show that mechanical shear stress affects voltage dependence of activation and fast inactivation of the Nav1.7 channel. Co-expression of the ß1 subunit, however, protects both gating modes of Nav1.7 against mechanical shear stress. Using molecular dynamics simulation, homology modelling and site-directed mutagenesis, we identify an intramolecular disulfide bond of ß1 (Cys21-Cys43) which is partially involved in this process: the ß1-C43A mutant prevents mechanical modulation of voltage dependence of activation, but not of fast inactivation. Our data emphasise the unique role of segment 6 of domain IV for sodium channel fast inactivation and confirm previous reports that the intracellular process of fast inactivation can be modified by interfering with the extracellular end of segment 6 of domain IV. Thus, our data suggest that physiological gating of Nav1.7 may be protected against mechanical stress in a living organism by assembly with the ß1 subunit.


Asunto(s)
Activación del Canal Iónico , Potenciales de la Membrana , Canal de Sodio Activado por Voltaje NAV1.7/química , Canal de Sodio Activado por Voltaje NAV1.7/fisiología , Estrés Mecánico , Secuencia de Aminoácidos , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Conformación Proteica , Dominios Proteicos , Subunidades de Proteína , Homología de Secuencia
6.
Pflugers Arch ; 470(12): 1787-1801, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30099632

RESUMEN

Mutations in voltage-gated sodium channels are associated with altered pain perception in humans. Most of these mutations studied to date present with a direct and intuitive link between the altered electrophysiological function of the channel and the phenotype of the patient. In this study, we characterize a variant of Nav1.8, D1639N, which has been previously identified in a patient suffering from the chronic pain syndrome "small fiber neuropathy". Using a heterologous expression system and patch-clamp analysis, we show that Nav1.8/D1639N reduces current density without altering biophysical gating properties of Nav1.8. Therefore, the D1639N variant causes a loss-of-function of the Nav1.8 sodium channel in a patient suffering from chronic pain. Using immunocytochemistry and biochemical approaches, we show that Nav1.8/D1639N impairs trafficking of the channel to the cell membrane. Neither co-expression of ß1 or ß3 subunit, nor overnight incubation at 27 °C rescued current density of the D1639N variant. On the other hand, overnight incubation with lidocaine fully restored current density of Nav1.8/D1639N most likely by overcoming the trafficking defect, whereas phenytoin failed to do so. Since lidocaine rescues the loss-of-function of Nav1.8/D1639N, it may offer a future therapeutic option for the patient carrying this variant. These results demonstrate that the D1639N variant, identified in a patient suffering from chronic pain, causes loss-of-function of the channel due to impaired cell surface trafficking and that this trafficking defect can be rescued by lidocaine.


Asunto(s)
Anestésicos Locales/farmacología , Dolor Crónico/genética , Lidocaína/farmacología , Mutación con Pérdida de Función , Canal de Sodio Activado por Voltaje NAV1.8/genética , Potenciales de Acción , Animales , Línea Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/fisiología , Humanos , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Transporte de Proteínas/efectos de los fármacos , Xenopus
8.
J Physiol ; 594(22): 6643-6660, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27307078

RESUMEN

KEY POINTS: The transient receptor potential ankyrin 1 (TRPA1) ion channel is expressed in nociceptive neurons and its activation causes ongoing pain and inflammation; TRPA1 is thought to play an important role in inflammation in the airways. TRPA1 is sensitised by repeated stimulation with chemical agonists in a calcium-free environment and this sensitisation is very long lasting following agonist removal. We show that agonist-induced sensitisation is independent of the agonist's binding site and is also independent of ion channel trafficking or of other typical signalling pathways. We find that sensitisation is intrinsic to the TRPA1 protein and is accompanied by a slowly developing shift in the voltage dependence of TRPA1 towards more negative membrane potentials. Agonist-induced sensitisation may provide an explanation for sensitisation following long-term exposure to harmful irritants and pollutants, particularly in the airways. ABSTRACT: The TRPA1 ion channel is expressed in nociceptive (pain-sensitive) neurons and responds to a wide variety of chemical irritants, such as acrolein in smoke or isothiocyanates in mustard. Here we show that in the absence of extracellular calcium the current passing through TRPA1 gradually increases (sensitises) during prolonged application of agonists. Activation by an agonist is essential, because activation of TRPA1 by membrane depolarisation did not cause sensitisation. Sensitisation is independent of the site of action of the agonist, because covalent and non-covalent agonists were equally effective, and is long lasting following agonist removal. Mutating N-terminal cysteines, the target of covalent agonists, did not affect sensitisation by the non-covalent agonist carvacrol, which activates by binding to a different site. Sensitisation is unaffected by agents blocking ion channel trafficking or by block of signalling pathways involving ATP, protein kinase A or the formation of lipid rafts, and does not require ion flux through the channel. Examination of the voltage dependence of TRPA1 activation shows that sensitisation is accompanied by a slowly developing shift in the voltage dependence of TRPA1 towards more negative membrane potentials, and is therefore intrinsic to the TRPA1 channel. Sensitisation may play a role in exacerbating the pain caused by prolonged activation of TRPA1.


Asunto(s)
Monoterpenos/farmacología , Canales de Potencial de Receptor Transitorio/agonistas , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Cimenos , Femenino , Humanos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Transducción de Señal/efectos de los fármacos
9.
J Headache Pain ; 16: 57, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26109436

RESUMEN

BACKGROUND: The capsaicin and heat responsive ion channel TRPV1 is expressed on trigeminal nociceptive neurons and has been implicated in the pathophysiology of migraine attacks. Here we investigate the efficacy of two TRPV1 channel antagonists in blocking trigeminal activation using two in vivo models of migraine. METHODS: Male Sprague-Dawley rats were used to study the effects of the TRPV1 antagonists JNJ-38893777 and JNJ-17203212 on trigeminal activation. Expression of the immediate early gene c-fos was measured following intracisternal application of inflammatory soup. In a second model, CGRP release into the external jugular vein was determined following injection of capsaicin into the carotid artery. RESULTS: Inflammatory up-regulation of c-fos in the trigeminal brain stem complex was dose-dependently and significantly reduced by both TRPV1 antagonists. Capsaicin-induced CGRP release was attenuated by JNJ-38893777 only in higher dosage. JNJ-17203212 was effective in all doses and fully abolished CGRP release in a time and dose-dependent manner. CONCLUSION: Our results describe two TRPV1 antagonists that are effective in two in vivo models of migraine. These results suggest that TRPV1 may play a role in the pathophysiological mechanisms, which are relevant to migraine.


Asunto(s)
Aminopiridinas/uso terapéutico , Modelos Animales de Enfermedad , Trastornos Migrañosos/tratamiento farmacológico , Piperazinas/uso terapéutico , Canales Catiónicos TRPV/antagonistas & inhibidores , Aminopiridinas/farmacología , Animales , Capsaicina/toxicidad , Relación Dosis-Respuesta a Droga , Genes fos/efectos de los fármacos , Masculino , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/metabolismo , Piperazinas/farmacología , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento , Regulación hacia Arriba/efectos de los fármacos
10.
Channels (Austin) ; 15(1): 208-228, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33487118

RESUMEN

Mutations in the voltage-gated sodium channel Nav1.7 are linked to human pain. The Nav1.7/N1245S variant was described before in several patients suffering from primary erythromelalgia and/or olfactory hypersensitivity. We have identified this variant in a pain patient and a patient suffering from severe and life-threatening orthostatic hypotension. In addition, we report a female patient suffering from muscle pain and carrying the Nav1.7/E1139K variant. We tested both Nav1.7 variants by whole-cell voltage-clamp recordings in HEK293 cells, revealing a slightly enhanced current density for the N1245S variant when co-expressed with the ß1 subunit. This effect was counteracted by an enhanced slow inactivation. Both variants showed similar voltage dependence of activation and steady-state fast inactivation, as well as kinetics of fast inactivation, deactivation, and use-dependency compared to WT Nav1.7. Finally, homology modeling revealed that the N1245S substitution results in different intramolecular interaction partners. Taken together, these experiments do not point to a clear pathogenic effect of either the N1245S or E1139K variant and suggest they may not be solely responsible for the patients' pain symptoms. As discussed previously for other variants, investigations in heterologous expression systems may not sufficiently mimic the pathophysiological situation in pain patients, and single nucleotide variants in other genes or modulatory proteins are necessary for these specific variants to show their effect. Our findings stress that biophysical investigations of ion channel mutations need to be evaluated with care and should preferably be supplemented with studies investigating the mutations in their context, ideally in human sensory neurons.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7 , Eritromelalgia , Células HEK293 , Humanos , Potenciales de la Membrana , Técnicas de Placa-Clamp
11.
Sci Rep ; 11(1): 6934, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767215

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an expanded polyglutamine repeat in the huntingtin gene. The neuropathology of HD is characterized by the decline of a specific neuronal population within the brain, the striatal medium spiny neurons (MSNs). The origins of this extreme vulnerability remain unknown. Human induced pluripotent stem cell (hiPS cell)-derived MSNs represent a powerful tool to study this genetic disease. However, the differentiation protocols published so far show a high heterogeneity of neuronal populations in vitro. Here, we compared two previously published protocols to obtain hiPS cell-derived striatal neurons from both healthy donors and HD patients. Patch-clamp experiments, immunostaining and RT-qPCR were performed to characterize the neurons in culture. While the neurons were mature enough to fire action potentials, a majority failed to express markers typical for MSNs. Voltage-clamp experiments on voltage-gated sodium (Nav) channels revealed a large variability between the two differentiation protocols. Action potential analysis did not reveal changes induced by the HD mutation. This study attempts to demonstrate the current challenges in reproducing data of previously published differentiation protocols and in generating hiPS cell-derived striatal MSNs to model a genetic neurodegenerative disorder in vitro.


Asunto(s)
Técnicas de Cultivo de Célula , Diferenciación Celular , Enfermedad de Huntington , Neuronas/fisiología , Potenciales de Acción , Animales , Calcio/metabolismo , Estudios de Casos y Controles , Línea Celular , Humanos , Células Madre Pluripotentes Inducidas , Ratones Endogámicos C57BL , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo , Ácido gamma-Aminobutírico/metabolismo
12.
Front Mol Neurosci ; 14: 709228, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34385907

RESUMEN

Apart from the most prominent symptoms in Autism spectrum disorder (ASD), namely deficits in social interaction, communication and repetitive behavior, patients often show abnormal sensory reactivity to environmental stimuli. Especially potentially painful stimuli are reported to be experienced in a different way compared to healthy persons. In our present study, we identified an ASD patient carrying compound heterozygous mutations in the voltage-gated sodium channel (VGSC) Na v 1.8, which is preferentially expressed in sensory neurons. We expressed both mutations, p.I1511M and p.R512∗, in a heterologous expression system and investigated their biophysical properties using patch-clamp recordings. The results of these experiments reveal that the p.R512∗ mutation renders the channel non-functional, while the p.I1511M mutation showed only minor effects on the channel's function. Behavioral experiments in a Na v 1.8 loss-of-function mouse model additionally revealed that Na v 1.8 may play a role in autism-like symptomatology. Our results present Na v 1.8 as a protein potentially involved in ASD pathophysiology and may therefore offer new insights into the genetic basis of this disease.

13.
Data Brief ; 31: 105844, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32637473

RESUMEN

This article describes the effect of the pyrethroid insecticide deltamethrin on the cardiac voltage-gated sodium channel Nav1.5. Two concentrations of deltamethrin were used and the effects were compared with those of the sea anemone toxin ATx-II and ß4-peptide, which is the C-terminus of the Nav channel ß-subunit. Activation, fast inactivation, deactivation, persistent currents and resurgent currents of Nav1.5 channels were assessed in the presence of these compounds. The data display not only the effect of separately applied compounds on Nav1.5 channels but also investigates how combinations of these substances affect Nav1.5 channel gating properties. The dataset presented in this article is related to the research article "Mechanism underlying hooked resurgent-like tail currents induced by an insecticide in human cardiac Nav1.5″ (Sarah Thull, Cristian Neacsu, Andrias O. O'Reilly, Stefanie Bothe, Ralf Hausmann, Tobias Huth, Jannis Meents, Angelika Lampert, doi: 10.1016/j.taap.2020.11501), that investigates the effect of the pyrethroid insecticide deltamethrin on Nav channel gating properties and explains the mechanism underlying hooked, resurgent-like tail currents induced by deltamethrin in Nav1.5 channels.

14.
Br J Pharmacol ; 177(19): 4481-4496, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32663327

RESUMEN

BACKGROUND AND PURPOSE: The voltage-gated sodium channel Nav 1.7 is essential for adequate perception of painful stimuli. Mutations in the encoding gene, SCN9A, cause various pain syndromes in humans. The hNav 1.7/A1632E channel mutant causes symptoms of erythromelalgia and paroxysmal extreme pain disorder (PEPD), and its main gating change is a strongly enhanced persistent current. On the basis of recently published 3D structures of voltage-gated sodium channels, we investigated how the inactivation particle binds to the channel, how this mechanism is altered by the hNav 1.7/A1632E mutation, and how dimerization modifies function of the pain-linked mutation. EXPERIMENTAL APPROACH: We applied atomistic molecular simulations to demonstrate the effect of the mutation on channel fast inactivation. Native PAGE was used to demonstrate channel dimerization, and electrophysiological measurements in HEK cells and Xenopus laevis oocytes were used to analyze the links between functional channel dimerization and impairment of fast inactivation by the hNav 1.7/A1632E mutation. KEY RESULTS: Enhanced persistent current through hNav 1.7/A1632E channels was caused by impaired binding of the inactivation particle, which inhibits proper functioning of the recently proposed allosteric fast inactivation mechanism. hNav 1.7 channels form dimers and the disease-associated persistent current through hNav 1.7/A1632E channels depends on their functional dimerization status: Expression of the synthetic peptide difopein, a 14-3-3 inhibitor known to functionally uncouple dimers, decreased hNav 1.7/A1632E channel-induced persistent currents. CONCLUSION AND IMPLICATIONS: Functional uncoupling of mutant hNav 1.7/A1632E channel dimers restored their defective allosteric fast inactivation mechanism. Our findings support the concept of sodium channel dimerization and reveal its potential relevance for human pain syndromes.


Asunto(s)
Eritromelalgia , Canal de Sodio Activado por Voltaje NAV1.7 , Humanos , Mutación , Canal de Sodio Activado por Voltaje NAV1.7/genética , Dolor , Fenotipo
15.
Neuropharmacology ; 158: 107749, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31461640

RESUMEN

The homotrimeric P2X3 receptor, one of the seven members of the ATP-gated P2X receptor family, plays a crucial role in sensory neurotransmission. P2X3 receptor antagonists have been identified as promising drugs to treat chronic cough and are suggested to offer pain relief in chronic pain such as neuropathic pain. Here, we analysed whether compounds affect P2X3 receptor activity by high-throughput screening of the Spectrum Collection of 2000 approved drugs, natural products and bioactive substances. We identified aurintricarboxylic acid (ATA) as a nanomolar-potency antagonist of P2X3 receptor-mediated responses. Two-electrode voltage clamp electrophysiology-based concentration-response analysis and selectivity profiling revealed that ATA strongly inhibits the rP2X1 and rP2X3 receptors (with IC50 values of 8.6 nM and 72.9 nM, respectively) and more weakly inhibits P2X2/3, P2X2, P2X4 or P2X7 receptors (IC50 values of 0.76 µM, 22 µM, 763 µM or 118 µM, respectively). Patch-clamp analysis of mouse DRG neurons revealed that ATA inhibited native P2X3 and P2X2/3 receptors to a similar extent than rat P2X3 and P2X2/3 receptors expressed in Xenopus oocytes. In a radioligand binding assay, up to 30 µM ATA did not compete with [3H]-ATP for rP2X3 receptor binding, indicating a non-competitive mechanism of action. Molecular docking studies, site-directed mutagenesis and concentration-response analysis revealed that ATA binds to the negative allosteric site of the hP2X3 receptor. In summary, ATA as a drug-like pharmacological tool compound is a nanomolar-potency, allosteric antagonist with selectivity towards αß-methylene-ATP-sensitive P2X1 and P2X3 receptors.


Asunto(s)
Ácido Aurintricarboxílico/farmacología , Neuronas/efectos de los fármacos , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X1/efectos de los fármacos , Receptores Purinérgicos P2X3/efectos de los fármacos , Regulación Alostérica , Sitio Alostérico , Animales , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Simulación del Acoplamiento Molecular , Neuronas/metabolismo , Oocitos , Técnicas de Placa-Clamp , Ratas , Receptores Purinérgicos P2X1/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Xenopus laevis
16.
EBioMedicine ; 39: 401-408, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30503201

RESUMEN

BACKGROUND: Small fiber neuropathy (SFN) is a severe and disabling chronic pain syndrome with no causal and limited symptomatic treatment options. Mechanistically based individual treatment is not available. We report an in-vitro predicted individualized treatment success in one therapy-refractory Caucasian patient suffering from SFN for over ten years. METHODS: Intrinsic excitability of human induced pluripotent stem cell (iPSC) derived nociceptors from this patient and respective controls were recorded on multi-electrode (MEA) arrays, in the presence and absence of lacosamide. The patient's pain ratings were assessed by a visual analogue scale (10: worst pain, 0: no pain) and treatment effect was objectified by microneurography recordings of the patient's single nerve C-fibers. FINDINGS: We identified patient-specific changes in iPSC-derived nociceptor excitability in MEA recordings, which were reverted by the FDA-approved compound lacosamide in vitro. Using this drug for individualized treatment of this patient, the patient's pain ratings decreased from 7.5 to 1.5. Consistent with the pain relief reported by the patient, microneurography recordings of the patient's single nerve fibers mirrored a reduced spontaneous nociceptor (C-fiber) activity in the patient during lacosamide treatment. Microneurography recordings yielded an objective measurement of altered peripheral nociceptor activity following treatment. INTERPRETATION: Thus, we are here presenting one example of successful patient specific precision medicine using iPSC technology and individualized therapeutic treatment based on patient-derived sensory neurons.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Lacosamida/administración & dosificación , Nociceptores/citología , Neuropatía de Fibras Pequeñas/tratamiento farmacológico , Anciano , Células Cultivadas , Femenino , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Lacosamida/farmacología , Modelos Biológicos , Nociceptores/efectos de los fármacos , Dimensión del Dolor , Medicina de Precisión , Investigación Biomédica Traslacional
17.
Pain ; 160(6): 1327-1341, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30720580

RESUMEN

The chronic pain syndrome inherited erythromelalgia (IEM) is attributed to mutations in the voltage-gated sodium channel (NaV) 1.7. Still, recent studies targeting NaV1.7 in clinical trials have provided conflicting results. Here, we differentiated induced pluripotent stem cells from IEM patients with the NaV1.7/I848T mutation into sensory nociceptors. Action potentials in these IEM nociceptors displayed a decreased firing threshold, an enhanced upstroke, and afterhyperpolarization, all of which may explain the increased pain experienced by patients. Subsequently, we investigated the voltage dependence of the tetrodotoxin-sensitive NaV activation in these human sensory neurons using a specific prepulse voltage protocol. The IEM mutation induced a hyperpolarizing shift of NaV activation, which leads to activation of NaV1.7 at more negative potentials. Our results indicate that NaV1.7 is not active during subthreshold depolarizations, but that its activity defines the action potential threshold and contributes significantly to the action potential upstroke. Thus, our model system with induced pluripotent stem cell-derived sensory neurons provides a new rationale for NaV1.7 function and promises to be valuable as a translational tool to profile and develop more efficacious clinical analgesics.


Asunto(s)
Eritromelalgia/fisiopatología , Células Madre Pluripotentes Inducidas/citología , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Células Receptoras Sensoriales/metabolismo , Potenciales de Acción/efectos de los fármacos , Estimulación Eléctrica/métodos , Eritromelalgia/genética , Ganglios Espinales/citología , Humanos , Potenciales de la Membrana/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.7/genética , Nociceptores/fisiología , Dolor/diagnóstico , Dolor/genética , Técnicas de Placa-Clamp/métodos , Tetrodotoxina/farmacología
18.
Br J Pharmacol ; 175(14): 3007-3020, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29722437

RESUMEN

BACKGROUND AND PURPOSE: Oxycodone is a potent semi-synthetic opioid that is commonly used for the treatment of severe acute and chronic pain. However, treatment with oxycodone can lead to cardiac electrical changes, such as long QT syndrome, potentially inducing sudden cardiac arrest. Here, we investigate whether the cardiac side effects of oxycodone can be explained by modulation of the cardiac Nav 1.5 sodium channel. EXPERIMENTAL APPROACH: Heterologously expressed human Nav 1.5, Nav 1.7 (HEK293 cells) or Nav 1.8 channels (mouse N1E-115 cells) were used for whole-cell patch-clamp electrophysiology. A variety of voltage-clamp protocols were used to test the effect of oxycodone on different channel gating modalities. Human stem cell-derived cardiomyocytes were used to measure the effect of oxycodone on cardiomyocyte beating. KEY RESULTS: Oxycodone inhibited Nav 1.5 channels, concentration and use-dependently, with an IC50 of 483 µM. In addition, oxycodone slows recovery of Nav 1.5 channels from fast inactivation and increases slow inactivation. At high concentrations, these effects lead to a reduced beat rate in cardiomyocytes and to arrhythmia. In contrast, no such effects could be observed on Nav 1.7 or Nav 1.8 channels. CONCLUSIONS AND IMPLICATIONS: Oxycodone leads to an accumulation of Nav 1.5 channels in inactivated states, with a slow time course. Although the concentrations needed to elicit cardiac arrhythmias in vitro are relatively high, some patients under long-term treatment with oxycodone as well as drug abusers and addicts might suffer from severe cardiac side effects induced by the slowly developing effects of oxycodone on Nav 1.5 channels.


Asunto(s)
Analgésicos Opioides/farmacología , Miocitos Cardíacos/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/fisiología , Oxicodona/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Animales , Línea Celular , Humanos , Ratones , Miocitos Cardíacos/fisiología
19.
PLoS One ; 12(1): e0170097, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28076424

RESUMEN

The TRPA1 ion channel is expressed in nociceptive (pain-sensitive) somatosensory neurons and is activated by a wide variety of chemical irritants, such as acrolein in smoke or isothiocyanates in mustard. Here, we investigate the enhancement of TRPA1 function caused by inflammatory mediators, which is thought to be important in lung conditions such as asthma and COPD. Protein kinase A is an important kinase acting downstream of inflammatory mediators to cause sensitization of TRPA1. By using site-directed mutagenesis, patch-clamp electrophysiology and calcium imaging we identify four amino acid residues, S86, S317, S428, and S972, as the principal targets of PKA-mediated phosphorylation and sensitization of TRPA1.


Asunto(s)
Canales de Calcio/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas del Tejido Nervioso/fisiología , Canales de Potencial de Receptor Transitorio/fisiología , Canales de Calcio/genética , Canales de Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Colforsina/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Cimenos , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/genética , Monoterpenos/farmacología , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Placa-Clamp , Fosforilación/efectos de los fármacos , Canal Catiónico TRPA1 , Transfección , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo
20.
PLoS One ; 11(9): e0161789, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27598514

RESUMEN

Gain-of-function mutations in the tetrodotoxin (TTX) sensitive voltage-gated sodium channel (Nav) Nav1.7 have been identified as a key mechanism underlying chronic pain in inherited erythromelalgia. Mutations in TTX resistant channels, such as Nav1.8 or Nav1.9, were recently connected with inherited chronic pain syndromes. Here, we investigated the effects of the p.M650K mutation in Nav1.8 in a 53 year old patient with erythromelalgia by microneurography and patch-clamp techniques. Recordings of the patient's peripheral nerve fibers showed increased activity dependent slowing (ADS) in CMi and less spontaneous firing compared to a control group of erythromelalgia patients without Nav mutations. To evaluate the impact of the p.M650K mutation on neuronal firing and channel gating, we performed current and voltage-clamp recordings on transfected sensory neurons (DRGs) and neuroblastoma cells. The p.M650K mutation shifted steady-state fast inactivation of Nav1.8 to more hyperpolarized potentials and did not significantly alter any other tested gating behaviors. The AP half-width was significantly broader and the stimulated action potential firing rate was reduced for M650K transfected DRGs compared to WT. We discuss the potential link between enhanced steady state fast inactivation, broader action potential width and the potential physiological consequences.


Asunto(s)
Eritromelalgia/genética , Ganglios Espinales/metabolismo , Canal de Sodio Activado por Voltaje NAV1.8/genética , Dolor/genética , Potenciales de Acción/genética , Estimulación Eléctrica , Eritromelalgia/fisiopatología , Ganglios Espinales/patología , Humanos , Masculino , Persona de Mediana Edad , Mutación , Fibras Nerviosas Amielínicas , Dolor/fisiopatología , Técnicas de Placa-Clamp , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/patología , Tetrodotoxina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA