Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Med Phys ; 48(3): 1404-1416, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33378092

RESUMEN

PURPOSE: To develop and implement an efficient and accurate commissioning procedure for small-field static beam animal irradiation studies on an MV research linear accelerator (Linatron-M9) using radiochromic gel dosimetry. MATERIALS: The research linear accelerator (Linatron-M9) is a 9 MV linac with a static fixed collimator opening of 5.08 cm diameter. Lead collimators were manually placed to create smaller fields of 2 × 2 cm2 , 1 × 1 cm2 , and 0.5 × 0.5 cm2 . Relative dosimetry measurements were performed, including profiles, percent depth dose (PDD) curves, beam divergence, and relative output factors using various dosimetry tools, including a small volume ionization chamber (A14), GAFCHROMIC™ EBT3 film, and Clearview gel dosimeters. The gel dosimeter was used to provide a 3D volumetric reference of the irradiated fields. The Linatron profiles and relative output factors were extracted at a reference depth of 2 cm with the output factor measured relative to the 2 × 2 cm2 reference field. Absolute dosimetry was performed using A14 ionization chamber measurements, which were verified using a national standards laboratory remote dosimetry service. RESULTS: Absolute dosimetry measurements were confirmed within 1.4% (k = 2, 95% confidence = 5%). The relative output factor of the small fields measured with films and gels agreed with a maximum relative percent error difference between the two methods of 1.1 % for the 1 × 1 cm2 field and 4.3 % for the 0.5 × 0.5 cm2 field. These relative errors were primarily due to the variability in the collimator positioning. The measured beam profiles demonstrated excellent agreement for beam size (measured as FWHM), within approximately 0.8 mm (or less). Film measurements were more accurate in the penumbra region due to the film's finer resolution compared with the gel dosimeter. Following the van Dyk criteria, the PDD values of the film and gel measurements agree within 11% in the buildup region starting from 0.5 cm depth and within 2.6 % beyond maximum dose and into the fall-off region for depths up to 5 cm. The 2D beam profile isodose lines agree within 0.5 mm in all regions for the 0.5 × 0.5 cm2 and the 1 × 1 cm2 fields and within 1 mm for the larger field of 2 × 2 cm2 . The 2D PDD curves agree within approximately 2% of the maximum in the typical therapy region (1-4 cm) for the 1 × 1 cm2 and 2 × 2 cm2 and within 5% for the 0.5 × 0.5 cm2 field. CONCLUSION: This work provides a commissioning process to measure the beam characteristics of a fixed beam MV accelerator with detailed dosimetric evaluation for its implementation in megavoltage small animal irradiation studies. Radiochromic gel dosimeters are efficient small-field relative dosimetry tools providing 3D dose measurements allowing for full representation of dose, dosimeter misalignment corrections and high reproducibility with low inter-dosimeter variability. Overall, radiochromic gels are valuable for fast, full relative dosimetry commissioning in comparison to films for application in high-energy small-field animal irradiation studies.


Asunto(s)
Aceleradores de Partículas , Radiometría , Animales , Dosimetría por Película , Dosímetros de Radiación , Radioterapia de Alta Energía , Reproducibilidad de los Resultados
2.
IEEE Access ; 8: 111347-111354, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34192107

RESUMEN

The outbreak of the novel coronavirus disease, COVID-19 turned into a global pandemic in March 2020. During these unprecedented times, there is an increased demand in medical and personal protective equipment (PPE). Since the supplies may take a long time to meet the global demand, reusing PPEs will help health care workers in their response to the COVID-19 pandemic. To ensure the safety and well-being of the medical first responders, PPE needs to be sterilized before reuse. In this review, we examine various sterilization techniques that can be used to sterilize PPEs and point out its limitations. The objective is to provide a foundation of knowledge incorporating different sterilization techniques that allow hospitals and clinics to pick the most suitable technique for sterilization of a particular PPE.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA