Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Pharmacogenet Genomics ; 33(3): 41-50, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36853865

RESUMEN

OBJECTIVE: The aim of the study was to investigate the gene polymorphisms of angiotensin-converting enzyme (ACE), angiotensinogen (AGT), and angiotensin type 1 receptor (AT1R) in association with coronavirus disease 2019 (COVID-19) mortality rates worldwide. METHODS: The prevalence of ACE I/D, AGT M235T, and AT1R A1166C alleles' frequencies in different populations was assessed. Data on COVID-19-related cases and deaths were acquired from the European Center for Disease Prevention and Control, which included weekly reports by country and continent. An Excel tool was developed to visualize the acquired data of mortality and incidence by classifying them by continent/country across specific periods of time. Spearman's nonparametric correlation was used to evaluate the association between country-based frequencies in RAS gene polymorphisms and COVID-19-related deaths. RESULTS: While China constituted the initial reservoir of COVID-19, incidence/mortality rates in Europe and America outnumbered the figures in the former. A clear association was identified between death rates and ACE D/I ( r = 0.3659; P = 0.033), as well as AGT A/G variants ( r = 0.7576; P = 0.015). Data on AT1R polymorphisms suggested no correlation with mortality rates. CONCLUSION: Our results demonstrated a significant disparity in COVID-19-related susceptibility and mortality among different populations and corroborate the importance of gene polymorphisms in predicting and consequently improving patients' outcomes.


Asunto(s)
Angiotensinógeno , COVID-19 , Peptidil-Dipeptidasa A , Humanos , Angiotensinógeno/genética , China , COVID-19/genética , COVID-19/mortalidad , Frecuencia de los Genes , Polimorfismo Genético , Peptidil-Dipeptidasa A/genética
2.
J Appl Toxicol ; 42(7): 1178-1191, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35001415

RESUMEN

Gasoline exposure has been widely reported in the literature as being toxic to human health. However, the exact underlying molecular mechanisms triggered by its inhalation have not been thoroughly investigated. We herein present a model of sub-chronic, static gasoline vapor inhalation in adult female C57BL/6 mice. Animals were exposed daily to either gasoline vapors (0.86 g/animal/90 min) or ambient air for 5 days/week over 7 consecutive weeks. At the end of the study period, toxic and molecular mechanisms underlying the inflammatory, oxidative, and apoptotic effects triggered by gasoline vapors, were examined in the lungs and liver of gasoline-exposed (GE) mice. Static gasoline exposure induced a significant increase (+21%) in lungs/body weight (BW) ratio in GE versus control (CON) mice along with a pulmonary inflammation attested by histological staining. The latter was consistent with increases in the transcript levels of proinflammatory cytokines [Interleukins (ILs) 4 and 6], respectively by ~ 6- and 4-fold in the lungs of GE mice compared to CON. Interestingly, IL-10 expression was also increased by ~ 10-fold in the lungs of GE mice suggesting an attempt to counterbalance the established inflammation. Moreover, the pulmonary expression of IL-12 and TNF-α was downregulated by 2- and 4-fold, respectively, suggesting the skewing toward Th2 phenotype. Additionally, GE mice showed a significant upregulation in Bax/Bcl-2 ratio, caspases 3, 8, and 9 with no change in JNK expression in the lungs, suggesting the activation of both intrinsic and extrinsic apoptotic pathways. Static gasoline exposure over seven consecutive weeks had a minor hepatic portal inflammation attested by H&E staining along with an increase in the hepatic expression of the mitochondrial complexes in GE mice. Therefore, tissue damage biomarkers highlight the health risks associated with vapor exposure and may present potential therapeutic targets for recovery from gasoline intoxication.


Asunto(s)
Gasolina , Inflamación , Animales , Apoptosis , Femenino , Gasolina/toxicidad , Inflamación/inducido químicamente , Exposición por Inhalación/efectos adversos , Pulmón , Ratones , Ratones Endogámicos C57BL
3.
Chem Biol Interact ; 388: 110834, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38103879

RESUMEN

The present study investigates the anti-neoplastic activity of a platinum (II) complex, Pt(II)5ClSS, and its platinum (IV) di-hydroxido analogue, Pt(IV)5ClSS, against mesenchymal cells (MCs), lung (A549), melanoma (A375) and breast (MDA-MB-231) cancer cells. Both complexes exhibited up to 14-fold improved cytotoxicity compared to cisplatin. NMR was used to determine that ∼25 % of Pt(IV)5ClSS was reduced to Pt(II)5ClSS in the presence of GSH (Glutathione) after 72 h. The complex 1H NMR spectra acquired for Pt(II)5ClSS with GSH shows evidence of degradation and environmental effects (∼30 %). The prominence of the 195Pt peak at âˆ¼ -2800 ppm suggests that a significant amount of Pt(II)5ClSS remained in the mixture. Pt(II)5ClSS and Pt(IV)5ClSS have shown exceptional selectivity to cancer cells in comparison to MCs (IC50 > 150 µM). Western blot analysis of Pt(II)5ClSS and Pt(IV)5ClSS on A549 cells revealed significant upregulation of cleaved PARP-1, BAX/Bcl2 ratio, cleaved caspase 3 and cytochrome thus suggesting apoptosis was induced through the intrinsic pathway. Flow cytometry also revealed significant cell death by apoptosis. Treatment with Pt(II)5ClSS and Pt(IV)5ClSS also showed significant amounts of free radical production while the COMET assay showed that both complexes cause minimal DNA damage. Cellular uptake results via ICP-MS suggest a time-dependent active mode of transport for both complexes with Pt(II)5ClSS being transported at a higher rate compared to Pt(IV)5ClSS. A Dose Escalation Study carried out on BALB/c mice showed that Pt(II)5ClSS and Pt(IV)5ClSS were approximately 8- folds and 12.5-folds, respectively, more tolerated than cisplatin. The present study provides evidence that both complexes may have the characteristics of an efficient and potentially safe anti-tumor drug that could support NSCLC treatment.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Profármacos , Animales , Ratones , Cisplatino/farmacología , Cisplatino/química , Platino (Metal)/química , Profármacos/química , Neoplasias Pulmonares/tratamiento farmacológico , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis
4.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38256884

RESUMEN

[Ru(bipy)2(dpphen)]Cl2 (where bipy = 2,2'-bipyridine and dpphen = 2,9-diphenyl-1,10-phenanthroline) (complex 1) is a sterically strained compound that exhibits promising in vitro photocytotoxicity on an array of cell lines. Since lung adenocarcinoma cancer remains the most common lung cancer and the leading cause of cancer deaths, the current study aims to evaluate the plausible effect and uptake of complex 1 on human alveolar carcinoma cells (A549) and mesenchymal stem cells (MSC), and assess its cytotoxicity in vitro while considering its effect on cell morphology, membrane integrity and DNA damage. MSC and A549 cells showed similar rates of complex 1 uptake with a plateau at 12 h. Upon photoactivation, complex 1 exhibited selective, potent anticancer activity against A549 cells with phototoxicity index (PI) values of 16, 25 and 39 at 24, 48 and 72 h, respectively. This effect was accompanied by a significant increase in A549-cell rounding and detachment, loss of membrane integrity and DNA damage. Flow cytometry experiments confirmed that A549 cells undergo apoptosis when treated with complex 1 followed by photoactivation. In conclusion, this present study suggests that complex 1 might be a promising candidate for photochemotherapy with photoproducts that possess selective anticancer effects in vitro. These results are encouraging to probe the potential activity of this complex in vivo.

5.
Toxics ; 10(7)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35878262

RESUMEN

Phthalate esters (PAEs) are plasticizers associated with multiple toxicities; however, no strict regulations have been implemented to restrict their use in medical applications in Lebanon. Our study aimed at assessing the potential risks correlated with phthalate exposure from IV bags manufactured in Lebanon. GC-MS analysis showed that di-(2-ethylhexyl) phthalate (DEHP) is the predominant phthalate found in almost all samples tested with values ranging from 32.8 to 39.7% w/w of plastic. DEHP concentrations in the IV solutions reached up to 148 µg/L, as measured by SPME-GC-MS/MS, thus resulting in hazard quotients greater than 1, specifically in neonates. The toxicity of DEHP is mainly attributed to its metabolites, most importantly mono-(2-ethylhexyl) phthalate (MEHP). The IV bag solution with the highest content in DEHP was therefore used to extrapolate the amounts of urinary MEHP. The highest concentrations were found in neonates having the lowest body weight, which is concerning, knowing the adverse effects of MEHP in infants. Our study suggests that the use of IV bags manufactured in Lebanon could pose a significant risk in hospitalized patients, especially infants in neonatal care. Therefore, Lebanon, as well as other countries, should start imposing laws that restrict the use of phthalates in medical IV bags and substitute them with less toxic plasticizers.

6.
Toxicol In Vitro ; 83: 105409, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35675845

RESUMEN

Gasoline is an essential petroleum-derived product powering the automotive economy worldwide. This research focused on the Volatile Organic Component (VOC) cocktail resulting from gasoline evaporation. Petroleum fugitive VOC inhalation by petrol station attendants have been widely associated with toxicological and health risks concerns. Another unusual practice in poor nations is gasoline sniffing to get high which can lead to intoxication and organ damages. In this study, a static air/liquid interface methodology was designed to emulate acute human lung-derived cell exposure to all the gasoline-derived generated VOCs. The research investigated the cytotoxic and genotoxic end points resulting from whole gasoline fumes in vitro exposure using A549 cells. Petroleum-derived VOCs were identified and characterized by GC-MS. VOCs exposure was emulated in a controlled environment by evaporating spiked crude gasoline (1 to 100 µl) in a closed exposure chamber. In the chamber, A549 cultured cells on snapwell inserts were exposed on their apical side to various concentrations of generated vapors for one hour at 37 °C to mimic lung exposure. The results indicated that acute gasoline whole VOCs exposure reduced cell viability (IC50 = 485 ppm immediately and IC50 = 516 ppm 24 h post-exposure), disrupted cell membrane integrity though LDH leakage and induced DNA damages. Furthermore, VOC exposure triggered caspase-independent apoptosis in exposed cells through upregulation of apoptotic pathways. Overall, the presented findings generated by the static exposure technique showed a practical and reproducible model that can be used to assess acute crude VOCs mixture toxicity endpoints and cell death pathways.


Asunto(s)
Contaminantes Atmosféricos , Petróleo , Compuestos Orgánicos Volátiles , Células A549 , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Apoptosis , Daño del ADN , Gases , Gasolina/toxicidad , Humanos , Petróleo/toxicidad , Emisiones de Vehículos/análisis , Compuestos Orgánicos Volátiles/toxicidad
7.
J Med Chem ; 65(24): 16481-16493, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36480933

RESUMEN

A novel platinum(II) complex 47OMESS(II) and its platinum(IV) derivative 47OMESS(IV) were synthesized and characterized. Cytotoxicity studies against mesenchymal cells (MCs) and lung (A549), breast (MDA-MB-231), and melanoma (A375) cancer cells demonstrated 7-20-fold superior activity for both complexes relative to cisplatin. Remarkably, 47OMESS(IV) demonstrated 17-22-fold greater selectivity toward the cancerous cells compared to the non-cancerous MCs. Western blot analysis on A549 cells showed the involvement of the intrinsic apoptotic pathway. Cellular fractionation and uptake experiments in A549 cells using ICP-mass spectrometry (MS) indicated that 47OMESS(II) and 47OMESS(IV) cross the cellular membrane predominantly via active transport mechanisms. The significant improvement in selectivity that is exhibited by 47OMESS(IV) is reported for the first time for this class of complexes.


Asunto(s)
Antineoplásicos , Platino (Metal) , Humanos , Platino (Metal)/química , Antineoplásicos/farmacología , Antineoplásicos/química , Cisplatino/farmacología , Apoptosis , Células A549 , Línea Celular Tumoral
8.
J Photochem Photobiol B ; 224: 112324, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34619435

RESUMEN

Visible light has long been recognized as a treatment for many diseases and an essential component of photo-induced chemotherapy. While previous data proved its inherent cytotoxicity, this study is the first to explore the use of a commercially available, high-intensity white LED light (24.5 mW.cm-2) as a treatment for skin tumors. After a 9-h exposure in vitro, the viability of Human Malignant Melanoma cells (A375) decreased by around 70%. Western blot analysis suggested an apoptotic cell death confirmed by the upregulation of Bax, cleaved PARP/caspase-3/8, cytochrome c, and t-bid. Additionally, cellular ROS accumulation and DNA damage were induced upon irradiation with blue light. When tested on a DMBA/TPA skin carcinogenesis model, a 90-min exposure to white light thrice weekly resulted in a significant decrease in tumor volumes/incidence compared to control and cisplatin groups, and restored normal morphological features, as confirmed by histopathology. Toxicological evaluation of ight-treated animals indicated a 100% survival rate, no skin irritation, no signs of discomfort or changes in body weight/behavior, and no toxicities to vital organs. Although these results must be confirmed by further studies, this research showed that short-exposure by commercially available high-intensity white LED light irradiation may be a promising approach for the treatment of superficial malignancies.


Asunto(s)
Luz , Fototerapia/métodos , Neoplasias Cutáneas/terapia , Animales , Apoptosis/efectos de la radiación , Western Blotting , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología
9.
Chem Biol Interact ; 348: 109644, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34508709

RESUMEN

Photoactivated chemotherapy (PACT) is an emerging strategy for targeted cancer therapy. Strained Ru complexes with pseudo-octahedral geometry may undergo photo-induced ligand dissociation, forming aquated photoproducts that are significantly more cytotoxic compared to the precursor complex. The complexes investigated were the strained complex [Ru(bpy)2BC]Cl2 (where bpy = 2,2'-bipyridine and BC = bathocuproine) and its unstrained control [Ru(bpy)2phen]Cl2 (where phen = 1,10-phenanthroline). The uptake of [Ru(bpy)2BC]Cl2, assessed by ICP/MS, started immediately post-incubation and plateaued after 24 h. Active transport was found as the main mode of intracellular transport. Cell viability assays on A375 cells indicated a mean phototoxicity index of 340-fold, and the effect was shown to be primarily mediated by the aquated photoproducts rather than the dissociating ligands. A significant increase in ROS production and DNA damage was also observed. Flow cytometry confirmed the induction of early apoptosis at 48 h that proceeds to late apoptosis/necrosis by 72 h post-treatment. Western blot analysis of pro- and anti-apoptotic proteins revealed that apoptosis was mediated through an interplay between the intrinsic and extrinsic pathways, as well as autophagy and via inhibition of the MAPK and PI3K pathways. In conclusion, this study demonstrates that [Ru(bpy)2BC]Cl2 is a multi-mechanistic PACT drug which exhibits promising anticancer potential.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Melanoma/patología , Fenantrolinas/química , Rutenio/química , Línea Celular Tumoral , Humanos , Ligandos , Fosfatidilinositol 3-Quinasas/metabolismo
10.
Anal Methods ; 12(37): 4517-4525, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32857072

RESUMEN

Research on Ru anti-cancer drugs is on the rise with many complexes in clinical trials. Inductively coupled plasma-mass spectrometry (ICP-MS) has been the standard technique for bioanalytical studies on Ru and Pt complexes in biological media. Tedious ICP-MS methods rely on detecting and quantifying the element while lacking important structural information of the original complexes. Despite being equally sensitive, more accessible, and highly selective to the target species, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has not been validated for the analysis of Ru drugs. Using USFDA guidelines, we report here the optimization and validation of a facile LC-MS/MS method for the detection and quantification of three Ru(ii) polypyridyl complexes in cells, plasma, and urine matrices. Importantly, a fast (10 min), single-step procedure was efficient for both extraction and sample purification, and analytes were rapidly eluted over a 3 min simple isocratic run. Specific parent ions were differentially fragmented by tandem MS, thus forming a unique and rational ligand dissociation chemistry that exhibits high selectivity to the target species with no measurable interferences or matrix effects. The developed LC-MS/MS method was advantageous vis-à-vis the prototypical ICP-MS based techniques both in vitro and in vivo, paving the way for its utilization in elaborate cellular uptake, pharmacokinetics, and pharmacodynamics studies.

11.
RSC Adv ; 9(30): 17254-17265, 2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35519840

RESUMEN

The use of ruthenium complexes as chemotherapeutic agents has been recently explored as one of the alternatives to conventional treatments. In the present study, two Ru(ii) polypyridyl complexes were synthesized and characterized: a strained [Ru(bipy)2(BC)]Cl2 (complex 1) where [bipy = 2,2'-bipyridine and BC = bathocuproine] along with the unstrained control [Ru(bipy)2(phen)]Cl2 (complex 2) where [phen = 1,10-phenanthroline]. The photophysical and photochemical analyses proved that unlike the photostable complex 2, complex 1 ejected both bipy and BC ligands at a ratio of 3 : 1 respectively. Results showed that the activity of complex 1 was significantly enhanced upon photoactivation. The response was however particularly significant in B16-F10 melanoma cells where phototoxicity index (PI = IC50 dark/IC50 light) was >900. When compared to cisplatin, the photoproducts were more potent against all tested cell lines, implying that the complex acquired significant chemotherapeutic potential upon irradiation. Cellular uptake of complex 1 and the free BC ligand were found to be significantly facilitated as evidenced by 400-600 fold increase in concentration of the compounds inside the cells relative to the extracellular culture medium. Complex 2 exhibited 35 times lower cellular concentration relative to complex 1. Flow cytometry and plasmid DNA gel electrophoresis measurements showed that complex 1 interacts with DNA inducing apoptosis in the dark and either late-apoptosis or necrosis upon irradiation. These findings corroborate the importance of lipophilic ligands such as BC to enhance uptake and subsequently improve the photochemotherapy potential of Ru(ii) polypyridyl complexes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA