Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Plant Physiol ; 182(2): 949-961, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31792150

RESUMEN

Senescence occurs in a programmed manner to dismantle the vegetative tissues and redirect nutrients towards metabolic pathways supporting reproductive success. External factors can trigger the senescence program as an adaptive strategy, indicating that this terminal program is controlled at different levels. It has been proposed that epigenetic factors accompany the reprogramming of the senescent genome; however, the mechanism and extent of this reprogramming remain unknown. Using bisulphite conversion followed by sequencing, we assessed changes in the methylome of senescent Arabidopsis (Arabidopsis thaliana) leaves induced by darkness and monitored their effect on gene and transposable element (TE) expression with transcriptome sequencing. Upon dark-induced senescence, genes controlling chromatin silencing were collectively down-regulated. As a consequence, the silencing of TEs was impaired, causing in particular young TEs to become preferentially reactivated. In parallel, heterochromatin at chromocenters was decondensed. Despite the disruption of the chromatin maintenance network, the global DNA methylation landscape remained highly stable, with localized changes mainly restricted to CHH methylation. Together, our data show that the terminal stage of plant life is accompanied by global changes in chromatin structure but only localized changes in DNA methylation, adding another example of the dynamics of DNA methylation during plant development.


Asunto(s)
Arabidopsis/genética , Senescencia Celular/genética , Metilación de ADN , Elementos Transponibles de ADN , Heterocromatina/metabolismo , Hojas de la Planta/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Senescencia Celular/efectos de la radiación , Cromatina/genética , Cromatina/metabolismo , Metilación de ADN/efectos de la radiación , Oscuridad , Regulación hacia Abajo , Sequías , Epigénesis Genética , Epigenoma , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Silenciador del Gen , Genoma de Planta , Histonas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/efectos de la radiación , Transcriptoma/genética
2.
Plant Cell ; 28(1): 42-54, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26704384

RESUMEN

MSI1 belongs to a family of histone binding WD40-repeat proteins. Arabidopsis thaliana contains five genes encoding MSI1-like proteins, but their functions in diverse chromatin-associated complexes are poorly understood. Here, we show that MSI1 is part of a histone deacetylase complex. We copurified HISTONE DEACETYLASE19 (HDA19) with MSI1 and transcriptional regulatory SIN3-like proteins and provide evidence that MSI1 and HDA19 associate into the same complex in vivo. These data suggest that MSI1, HDA19, and HISTONE DEACETYLATION COMPLEX1 protein form a core complex that can integrate various SIN3-like proteins. We found that reduction of MSI1 or HDA19 causes upregulation of abscisic acid (ABA) receptor genes and hypersensitivity of ABA-responsive genes. The MSI1-HDA19 complex fine-tunes ABA signaling by binding to the chromatin of ABA receptor genes and by maintaining low levels of acetylation of histone H3 at lysine 9, thereby affecting the expression levels of ABA receptor genes. Reduced MSI1 or HDA19 levels led to increased tolerance to salt stress corresponding to the increased ABA sensitivity of gene expression. Together, our results reveal the presence of an MSI1-HDA19 complex that fine-tunes ABA signaling in Arabidopsis.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Histona Desacetilasas/metabolismo , Transducción de Señal , Ácido Abscísico/farmacología , Acetilación/efectos de los fármacos , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Histonas/metabolismo , Lisina/metabolismo , Modelos Biológicos , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Regulación hacia Arriba/efectos de los fármacos
3.
Cells ; 11(4)2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35203255

RESUMEN

Heart failure is a leading cause of death that develops subsequent to deleterious hypertrophic cardiac remodelling. MAPK pathways play a key role in coordinating the induction of gene expression during hypertrophy. Induction of the immediate early gene (IEG) response including activator protein 1 (AP-1) complex factors is a necessary and early event in this process. How MAPK and IEG expression are coupled during cardiac hypertrophy is not resolved. Here, in vitro, in rodent models and in human samples, we demonstrate that MAPK-stimulated IEG induction depends on the mitogen and stress-activated protein kinase (MSK) and its phosphorylation of histone H3 at serine 28 (pH3S28). pH3S28 in IEG promoters in turn recruits Brg1, a BAF60 ATP-dependent chromatin remodelling complex component, initiating gene expression. Without MSK activity and IEG induction, the hypertrophic response is suppressed. These studies provide new mechanistic insights into the role of MAPK pathways in signalling to the epigenome and regulation of gene expression during cardiac hypertrophy.


Asunto(s)
Ensamble y Desensamble de Cromatina , Histonas , Cardiomegalia/genética , Expresión Génica , Histonas/metabolismo , Humanos , Fosforilación , Serina/metabolismo
4.
Mol Syst Biol ; 6: 373, 2010 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-20531403

RESUMEN

An important question in plant biology is how genes influence the crosstalk between hormones to regulate growth. In this study, we model POLARIS (PLS) gene function and crosstalk between auxin, ethylene and cytokinin in Arabidopsis. Experimental evidence suggests that PLS acts on or close to the ethylene receptor ETR1, and a mathematical model describing possible PLS-ethylene pathway interactions is developed, and used to make quantitative predictions about PLS-hormone interactions. Modelling correctly predicts experimental results for the effect of the pls gene mutation on endogenous cytokinin concentration. Modelling also reveals a role for PLS in auxin biosynthesis in addition to a role in auxin transport. The model reproduces available mutants, and with new experimental data provides new insights into how PLS regulates auxin concentration, by controlling the relative contribution of auxin transport and biosynthesis and by integrating auxin, ethylene and cytokinin signalling. Modelling further reveals that a bell-shaped dose-response relationship between endogenous auxin and root length is established via PLS. This combined modelling and experimental analysis provides new insights into the integration of hormonal signals in plants.


Asunto(s)
Arabidopsis/metabolismo , Modelos Biológicos , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Mutación/genética , Raíces de Plantas/anatomía & histología , Raíces de Plantas/metabolismo , Transcripción Genética
5.
BMC Genomics ; 10: 643, 2009 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-20042113

RESUMEN

BACKGROUND: New generation sequencing technology has allowed investigation of the small RNA populations of flowering plants at great depth. However, little is known about small RNAs in their reproductive cells, especially in post-meiotic cells of the gametophyte generation. Pollen - the male gametophyte - is the specialised haploid structure that generates and delivers the sperm cells to the female gametes at fertilisation. Whether development and differentiation of the male gametophyte depends on the action of microRNAs and trans-acting siRNAs guiding changes in gene expression is largely unknown. Here we have used 454 sequencing to survey the various small RNA populations present in mature pollen of Arabidopsis thaliana. RESULTS: In this study we detected the presence of 33 different microRNA families in mature pollen and validated the expression levels of 17 selected miRNAs by Q-RT-PCR. The majority of the selected miRNAs showed pollen-enriched expression compared with leaves. Furthermore, we report for the first time the presence of trans-acting siRNAs in pollen. In addition to describing new patterns of expression for known small RNAs in each of these classes, we identified 7 putative novel microRNAs. One of these, ath-MIR2939, targets a pollen-specific F-box transcript and we demonstrate cleavage of its target mRNA in mature pollen. CONCLUSIONS: Despite the apparent simplicity of the male gametophyte, comprising just two different cell types, pollen not only utilises many miRNAs and trans-acting siRNAs expressed in the somatic tissues but also expresses novel miRNAs.


Asunto(s)
Arabidopsis/genética , MicroARNs/genética , Polen/genética , ARN Interferente Pequeño/genética , Secuencia de Bases , Biología Computacional , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN de Planta/genética , Análisis de Secuencia de ARN
6.
PLoS One ; 9(6): e89272, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24887415

RESUMEN

Foliar tissue samples of cultivated daylilies (Hemerocallis hybrids) showing the symptoms of a newly emergent foliar disease known as 'spring sickness' were investigated for associated fungi. The cause(s) of this disease remain obscure. We isolated repeatedly a fungal species which proved to be member of the genus Botrytis, based on immunological tests. DNA sequence analysis of these isolates, using several different phyogenetically informative genes, indicated that they represent a new Botrytis species, most closely related to B. elliptica (lily blight, fire blight) which is a major pathogen of cultivated Lilium. The distinction of the isolates was confirmed by morphological analysis of asexual sporulating cultures. Pathogenicity tests on Hemerocallis tissues in vitro demonstrated that this new species was able to induce lesions and rapid tissue necrosis. Based on this data, we infer that this new species, described here as B. deweyae, is likely to be an important contributor to the development of 'spring sickness' symptoms. Pathogenesis may be promoted by developmental and environmental factors that favour assault by this necrotrophic pathogen. The emergence of this disease is suggested to have been triggered by breeding-related changes in cultivated hybrids, particularly the erosion of genetic diversity. Our investigation confirms that emergent plant diseases are important and deserve close monitoring, especially in intensively in-bred plants.


Asunto(s)
Botrytis/fisiología , Hemerocallis/crecimiento & desarrollo , Hemerocallis/microbiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Secuencia de Bases , Botrytis/citología , Botrytis/genética , Botrytis/patogenicidad , ADN Intergénico/genética , Genes del Tipo Sexual de los Hongos , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Esporas Fúngicas/citología , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/ultraestructura , Esterilización
7.
Front Plant Sci ; 4: 75, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23577016

RESUMEN

Understanding how hormones and genes interact to coordinate plant growth is a major challenge in developmental biology. The activities of auxin, ethylene, and cytokinin depend on cellular context and exhibit either synergistic or antagonistic interactions. Here we use experimentation and network construction to elucidate the role of the interaction of the POLARIS peptide (PLS) and the auxin efflux carrier PIN proteins in the crosstalk of three hormones (auxin, ethylene, and cytokinin) in Arabidopsis root development. In ethylene hypersignaling mutants such as polaris (pls), we show experimentally that expression of both PIN1 and PIN2 significantly increases. This relationship is analyzed in the context of the crosstalk between auxin, ethylene, and cytokinin: in pls, endogenous auxin, ethylene and cytokinin concentration decreases, approximately remains unchanged and increases, respectively. Experimental data are integrated into a hormonal crosstalk network through combination with information in literature. Network construction reveals that the regulation of both PIN1 and PIN2 is predominantly via ethylene signaling. In addition, it is deduced that the relationship between cytokinin and PIN1 and PIN2 levels implies a regulatory role of cytokinin in addition to its regulation to auxin, ethylene, and PLS levels. We discuss how the network of hormones and genes coordinates plant growth by simultaneously regulating the activities of auxin, ethylene, and cytokinin signaling pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA