Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Inorg Chem ; 63(6): 2899-2908, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38127051

RESUMEN

The energetic and geometric features enabling redox chemistry across the copper cupredoxin fold contain key components of electron transfer chains (ETC), which have been extended here by templating the cross-ß bilayer assembly of a synthetic nonapeptide, HHQALVFFA-NH2 (K16A), with copper ions. Similar to ETC cupredoxin plastocyanin, these assemblies contain copper sites with blue-shifted (λmax 573 nm) electronic transitions and strongly oxidizing reduction potentials. Electron spin echo envelope modulation and X-ray absorption spectroscopies define square planar Cu(II) sites containing a single His ligand. Restrained molecular dynamics of the cross-ß peptide bilayer architecture support metal ion coordination stabilizing the leaflet interface and indicate that the relatively high reduction potential is not simply the result of distorted coordination geometry (entasis). Cyclic voltammetry (CV) supports a charge-hopping mechanism across multiple copper centers placed 10-12 Å apart within the assembled peptide leaflet interface. This metal-templated scaffold accordingly captures the electron shuttle and cupredoxin functionality in a peptide membrane-localized electron transport chain.

2.
Chembiochem ; 22(7): 1292-1301, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33238068

RESUMEN

Many bacteria, such as Pseudomonas aeruginosa, regulate phenotypic switching in a population density-dependent manner through a phenomenon known as quorum sensing (QS). For Gram-negative bacteria, QS relies on the synthesis, transmission, and perception of low-molecular-weight signal molecules that are predominantly N-acyl-l-homoserine lactones (AHLs). Efforts to disrupt AHL-mediated QS have largely focused on the development of synthetic AHL analogues (SAHLAs) that are structurally similar to native AHLs. However, like AHLs, these molecules tend to be hydrophobic and are poorly soluble under aqueous conditions. Water-soluble macrocycles, such as cyclodextrins (CDs), that encapsulate hydrophobic guests have long been used by both the agricultural and pharmaceutical industries to overcome the solubility issues associated with hydrophobic compounds of interest. Conveniently, CDs have also demonstrated anti-AHL-mediated QS effects. Here, using fluorescence spectroscopy, NMR spectrometry, and mass spectrometry, we evaluate the affinity of SAHLAs, as well as their hydrolysis products, for ß-CD inclusion. We also evaluated the ability of these complexes to inhibit wild-type P. aeruginosa virulence in a Caenorhabditis elegans host infection study, for the first time. Our efforts confirm the potential of ß-CDs for the improved delivery of SAHLAs at the host/microbial interface, expanding the utility of this approach as a strategy for probing and controlling QS.


Asunto(s)
Acil-Butirolactonas/química , Portadores de Fármacos/química , Percepción de Quorum , beta-Ciclodextrinas/química , Acil-Butirolactonas/síntesis química , Acil-Butirolactonas/farmacología , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/microbiología , Óvulo/efectos de los fármacos , Óvulo/microbiología , Pseudomonas aeruginosa/patogenicidad , Pseudomonas aeruginosa/fisiología , Percepción de Quorum/efectos de los fármacos , Virulencia
3.
J Am Chem Soc ; 142(1): 502-511, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31814397

RESUMEN

Substituted triphenylamine (TPA) radical cations show great potential as oxidants and as spin-containing units in polymer magnets. Their properties can be further tuned by supramolecular assembly. Here, we examine how the properties of photogenerated radical cations, intrinsic to TPA macrocycles, are altered upon their self-assembly into one-dimensional columns. These macrocycles consist of two TPAs and two methylene ureas, which drive the assembly into porous organic materials. Advantageously, upon activation the crystals can undergo guest exchange in a single-crystal-to-single-crystal transformation generating a series of isoskeletal host-guest complexes whose properties can be directly compared. Photoinduced electron transfer, initiated using 365 nm light-emitting diodes, affords radicals at room temperature as observed by electron paramagnetic resonance (EPR) spectroscopy. The line shape of the EPR spectra and the quantity of radicals can be modulated by both polarity and heavy atom inclusion of the encapsulated guest. These photogenerated radicals are persistent, with half-lives between 1 and 7 d and display no degradation upon radical decay. Re-irradiation of the samples can restore the radical concentration back to a similar maximum concentration, a feature that is reproducible over several cycles. EPR simulations of a representative spectrum indicate two species, one containing two N hyperfine interactions and an additional broad signal with no resolvable hyperfine interaction. Intriguingly, TPA analogues without bromine substitution also exhibit similar quantities of photogenerated radicals, suggesting that supramolecular strategies can enable more flexibility in stable TPA radical structures. These studies will help guide the development of new photoactive materials.

4.
Angew Chem Int Ed Engl ; 59(1): 358-363, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31617300

RESUMEN

Proteinaceous plaques associated with neurodegenerative diseases contain many biopolymers including the polyanions glycosaminoglycans and nucleic acids. Polyanion-induced amyloid fibrillation has been implicated in disease etiology, but structural models for amyloid/nucleic acid co-assemblies remain limited. Here we constrain nucleic acid/peptide interactions with model peptides that exploit electrostatic complementarity and define a novel amyloid/nucleic acid co-assembly. The structure provides a model for nucleic acid/amyloid co-assembly as well as insight into the energetic determinants involved in templating amyloid assembly.


Asunto(s)
Amiloide/química , Ácidos Nucleicos de Péptidos/química , Humanos , Modelos Moleculares , Electricidad Estática
5.
Angew Chem Int Ed Engl ; 58(13): 4210-4216, 2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30672073

RESUMEN

Solid-state NMR measurements coupled with density functional theory (DFT) calculations demonstrate how hydrogen positions can be refined in a crystalline system. The precision afforded by rotational-echo double-resonance (REDOR) NMR to interrogate 13 C-1 H distances is exploited along with DFT determinations of the 13 C tensor of carbonates (CO3 2- ). Nearby 1 H nuclei perturb the axial symmetry of the carbonate sites in the hydrated carbonate mineral, hydromagnesite [4 MgCO3 ⋅Mg(OH)2 ⋅4 H2 O]. A match between the calculated structure and solid-state NMR was found by testing multiple semi-local and dispersion-corrected DFT functionals and applying them to optimize atom positions, starting from X-ray diffraction (XRD)-determined atomic coordinates. This was validated by comparing calculated to experimental 13 C{1 H} REDOR and 13 C chemical shift anisotropy (CSA) tensor values. The results show that the combination of solid-state NMR, XRD, and DFT can improve structure refinement for hydrated materials.

6.
J Am Chem Soc ; 139(47): 17007-17010, 2017 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-29111722

RESUMEN

Defining pathways for amyloid assembly could impact therapeutic strategies for as many as 50 disease states. Here we show that amyloid assembly is subject to different forces regulating nucleation and propagation steps and provide evidence that the more global ß-sheet/ß-sheet facial complementarity is a critical determinant for amyloid nucleation and structural selection.


Asunto(s)
Amiloide/química , Amiloide/síntesis química , Proteínas Amiloidogénicas/química , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Proteínas Amiloidogénicas/metabolismo , Humanos , Estructura Secundaria de Proteína
7.
Environ Sci Technol ; 51(11): 6553-6559, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28460168

RESUMEN

Multiple chemisorption products are found from the interaction of CO2 with the solid-amine sorbent, 3-aminopropyl silane (APS), bound to mesoporous silica (SBA15) using solid-state NMR and FTIR spectroscopy. We employed a combination of both 15N{13C} rotational-echo double-resonance (REDOR) NMR and 13C{15N} REDOR to determine the chemical identity of these products. 15N{13C} REDOR measurements are consistent with a single 13C-15N pair and distance of 1.45 Å. In contrast, both 13C{15N} REDOR and 13C CPMAS are consistent with multiple 13C products. 13C CPMAS shows two neighboring resonances, whose chemical shifts are consistent with carbamate (at 165 ppm) and carbamic acid. The 13C{15N} REDOR experiments resonant at 165 ppm show an incomplete buildup of the REDOR data to ∼90% of the expected maximum. We conclude this 10% missing intensity corresponds to a 13C NMR species that resonates at the identical chemical shift but that is not in dipolar contact with 15N. These data are consistent with the presence of bicarbonate, HCO3-, since it is commonly observed at ∼165 ppm and lacks 15N for dipolar coupling.


Asunto(s)
Dióxido de Carbono , Dióxido de Silicio , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética
8.
Philos Trans A Math Phys Eng Sci ; 375(2109)2017 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-29133453

RESUMEN

The RNA world hypothesis simplifies the complex biopolymer networks underlining the informational and metabolic needs of living systems to a single biopolymer scaffold. This simplification requires abiotic reaction cascades for the construction of RNA, and this chemistry remains the subject of active research. Here, we explore a complementary approach involving the design of dynamic peptide networks capable of amplifying encoded chemical information and setting the stage for mutualistic associations with RNA. Peptide conformational networks are known to be capable of evolution in disease states and of co-opting metal ions, aromatic heterocycles and lipids to extend their emergent behaviours. The coexistence and association of dynamic peptide and RNA networks appear to have driven the emergence of higher-order informational systems in biology that are not available to either scaffold independently, and such mutualistic interdependence poses critical questions regarding the search for life across our Solar System and beyond.This article is part of the themed issue 'Reconceptualizing the origins of life'.


Asunto(s)
Biología Computacional , Péptidos/química , Péptidos/metabolismo , ARN/química , ARN/metabolismo , Modelos Moleculares , Conformación Molecular , Origen de la Vida
9.
J Am Chem Soc ; 138(10): 3579-86, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26942690

RESUMEN

Energetic insights emerging from the structural characterization of peptide cross-ß assemblies have enabled the design and construction of robust asymmetric bilayer peptide membranes. Two peptides differing only in their N-terminal residue, phosphotyrosine vs lysine, coassemble as stacks of antiparallel ß-sheets with precisely patterned charged lattices stabilizing the bilayer leaflet interface. Either homogeneous or mixed leaflet composition is possible, and both create nanotubes with dense negative external and positive internal solvent exposed surfaces. Cross-seeding peptide solutions with a preassembled peptide nanotube seed leads to domains of different leaflet architecture within single nanotubes. Architectural control over these cross-ß assemblies, both across the bilayer membrane and along the nanotube length, provides access to highly ordered asymmetric membranes for the further construction of functional mesoscale assemblies.


Asunto(s)
Proteínas de la Membrana/química , Nanotubos de Péptidos/química , Péptidos/química , Proteínas de la Membrana/síntesis química , Péptidos/síntesis química , Dominios Proteicos
10.
Biochem Biophys Res Commun ; 466(1): 28-32, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26301631

RESUMEN

CXCR4 is a GPCR involved in leukocyte trafficking. Small molecule antagonists of the receptor may treat inflammatory disease, cancer and HIV. Here we probe the binding of a tetrahydroisoquinoline-based antagonist (TIQ-10) to CXCR4 using saturation transfer double-difference (STDD) NMR. STDD spectra were acquired using extracts from Chinese Hamster Ovary cells expressing membrane-embedded CXCR4. The experiments demonstrate competitive binding between TIQ-10 and established antagonists and provide the TIQ-10 - CXCR4 binding epitope. Molecular modeling of TIQ-10 into the binding pocket provides a pose consistent with STDD-derived interactions. This study paves the way for future investigations of GPCR-ligand interactions in a biological milieu for use in chemical biology, biochemistry, structural biology, and rational drug design.


Asunto(s)
Receptores CXCR4/antagonistas & inhibidores , Receptores CXCR4/metabolismo , Tetrahidroisoquinolinas/química , Tetrahidroisoquinolinas/farmacología , Animales , Sitios de Unión , Células CHO , Cricetinae , Cricetulus , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Receptores CXCR4/química
11.
Environ Sci Technol ; 49(22): 13684-91, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26477882

RESUMEN

Hyperbranched amine polymers (HAS) grown from the mesoporous silica SBA-15 (hereafter "SBA-15-HAS") exhibit large capacities for CO2 adsorption. We have used static in situ and magic-angle spinning (MAS) ex situ (13)C nuclear magnetic resonance (NMR) to examine the adsorption of CO2 by SBA-15-HAS. (13)C NMR distinguishes the signal of gas-phase (13)CO2 from that of the chemisorbed species. HAS polymers possess primary, secondary, and tertiary amines, leading to multiple chemisorption reaction outcomes, including carbamate (RnNCOO(-)), carbamic acid (RnNCOOH), and bicarbonate (HCO3(-)) moieties. Carbamates and bicarbonate fall within a small (13)C chemical shift range (162-166 ppm), and a mixture was observed including carbamic acid and carbamate, the former disappearing upon evacuation of the sample. By examining the (13)C-(14)N dipolar coupling through low-field (B0 = 3 T) (13)C{(1)H} cross-polarization MAS NMR, carbamate is confirmed through splitting of the (13)C resonance. A third species that is either bicarbonate or a second carbamate is evident from bimodal T2 decay times of the ∼163 ppm peak, indicating the presence of two species comprising that single resonance. The mixture of products suggests that (1) the presence of amines and water leads to bicarbonate being present and/or (2) the multiple types of amine sites in HAS permit formation of chemically distinct carbamates.


Asunto(s)
Dióxido de Carbono/química , Espectroscopía de Resonancia Magnética/métodos , Polímeros/química , Adsorción , Aminas/química , Carbamatos/química , Isótopos de Carbono , Dióxido de Silicio , Agua/química
12.
Biochemistry ; 53(26): 4225-7, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24955650

RESUMEN

Living cells contain a range of densely phosphorylated surfaces, including phospholipid membranes, ribonucleoproteins, and nucleic acid polymers. Hyperphosphorylated surfaces also accumulate in neurodegenerative diseases as neurofibrillar tangles. We have synthesized and structurally characterized a precisely patterned phosphotyrosine surface and establish this assembly as a surrogate of the neuronal tangles by demonstrating its high-affinity binding to histone H1. This association with nucleic acid binding proteins underscores the role such hyperphosphorylated surfaces may play in disease and opens functional exploration into protein-phosphorylated surface interactions in a wide range of other complex assemblies.


Asunto(s)
Histonas/química , Nanotubos de Péptidos/química , Fosfotirosina/química , Animales , Humanos , Nanotubos de Péptidos/ultraestructura
13.
J Am Chem Soc ; 136(43): 15146-9, 2014 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-25313920

RESUMEN

In contrast to an expected Ostwald-like ripening of amyloid assemblies, the nucleating core of the Dutch mutant of the Aß peptide of Alzheimer's disease assembles through a series of conformational transitions. Structural characterization of the intermediate assemblies by isotope-edited IR and solid-state NMR reveals unexpected strand orientation intermediates and suggests new nucleation mechanisms in a progressive assembly pathway.


Asunto(s)
Péptidos beta-Amiloides/química , Agregado de Proteínas , Secuencia de Aminoácidos , Cinética , Modelos Moleculares , Estructura Secundaria de Proteína
14.
Soft Matter ; 10(23): 4162-72, 2014 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-24763698

RESUMEN

The cross-ß peptide architecture is associated with numerous functional biomaterials and deleterious disease related aggregates. While these diverse and ubiquitous paracrystalline assemblies have been widely studied, a fundamental understanding of the nucleation and aggregation pathways to these structures remains elusive. Here we highlight a novel application of fluorescence lifetime imaging microscopy in characterising the critical stages of peptide aggregation. Using the central nucleating core of the amyloid-ß (Aß), Aß(16-22), as a model cross-ß system, and utilising a small fraction of rhodamine labelled peptide (Rh110-Aß(17-22)), we map out a folding pathway from monomer to paracrystalline nanotube. Using this intrinsic fluorescence reporter, we demonstrate the effects of interfaces and evaporation on the nucleation of sub-critical concentration solutions, providing access to previously uncharacterised intermediate morphologies. Using fluorescence lifetime we follow the local peptide environment through the stages of nucleation and hydrophobic collapse, ending in a stable final structure. This work provides a metric for future implementations of measuring fluorescence lifetimes of intrinsic fluorescence reporters during the very dynamic processes relating to peptide nucleation and maturation.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Microscopía Fluorescente , Péptidos beta-Amiloides/síntesis química , Péptidos beta-Amiloides/química , Interacciones Hidrofóbicas e Hidrofílicas , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Polimerizacion , Rodaminas/química
15.
Nat Commun ; 15(1): 788, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38278785

RESUMEN

In neurodegenerative diseases, polymorphism and supramolecular assembly of ß-sheet amyloids are implicated in many different etiologies and may adopt either a left- or right-handed supramolecular chirality. Yet, the underlying principles of how sequence regulates supramolecular chirality remains unknown. Here, we characterize the sequence specificity of the central core of amyloid-ß 42 and design derivatives which enable chirality inversion at biologically relevant temperatures. We further find that C-terminal modifications can tune the energy barrier of a left-to-right chiral inversion. Leveraging this design principle, we demonstrate how temperature-triggered chiral inversion of peptides hosting therapeutic payloads modulates the dosed release of an anticancer drug. These results suggest a generalizable approach for fine-tuning supramolecular chirality that can be applied in developing treatments to regulate amyloid morphology in neurodegeneration as well as in other disease states.


Asunto(s)
Péptidos beta-Amiloides , Amiloide , Amiloide/química , Temperatura
16.
J Am Chem Soc ; 135(41): 15565-78, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24028069

RESUMEN

Design of a structurally defined helical assembly is described that involves recoding of the amino acid sequence of peptide GCN4-pAA. In solution and the crystalline state, GCN4-pAA adopts a 7-helix bundle structure that resembles a supramolecular lock washer. Structurally informed mutagenesis of the sequence of GCN4-pAA afforded peptide 7HSAP1, which undergoes self-association into a nanotube via noncovalent interactions between complementary interfaces of the coiled-coil lock-washer structures. Biophysical measurements conducted in solution and the solid state over multiple length scales of structural hierarchy are consistent with self-assembly of nanotube structures derived from 7-helix bundle subunits. The dimensions of the supramolecular assemblies are similar to those observed in the crystal structure of GCN4-pAA. Fluorescence studies of the interaction of 7HSAP1 with the solvatochromic fluorophore PRODAN indicated that the nanotubes could encapsulate shape-appropriate small molecules with high binding affinity.


Asunto(s)
Nanotubos/química , Péptidos/química , Modelos Moleculares , Tamaño de la Partícula , Péptidos/síntesis química , Péptidos/genética , Propiedades de Superficie
17.
Chembiochem ; 14(14): 1762-71, 2013 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-24014287

RESUMEN

Truncated and mutated amyloid-ß (Aß) peptides are models for systematic study-in homogeneous preparations-of the molecular origins of metal ion effects on Aß aggregation rates, types of aggregate structures formed, and cytotoxicity. The 3D geometry of bis-histidine imidazole coordination of Cu(II) in fibrils of the nonapetide acetyl-Aß(13-21)H14A has been determined by powder (14) N electron spin echo envelope modulation (ESEEM) spectroscopy. The method of simulation of the anisotropic combination modulation is described and benchmarked for a Cu(II) -bis-cis-imidazole complex of known structure. The revealed bis-cis coordination mode, and the mutual orientation of the imidazole rings, for Cu(II) in Ac-Aß(13-21)H14A fibrils are consistent with the proposed ß-sheet structural model and pairwise peptide interaction with Cu(II) , with an alternating [-metal-vacancy-]n pattern, along the N-terminal edge. Metal coordination does not significantly distort the intra-ß-strand peptide interactions, which provides a possible explanation for the acceleration of Ac-Aß(13-21)H14A fibrillization by Cu(II) , through stabilization of the associated state and low-reorganization integration of ß-strand peptide pair precursors.


Asunto(s)
Péptidos beta-Amiloides/química , Cobre/química , Espectroscopía de Resonancia por Spin del Electrón , Histidina/química , Péptidos beta-Amiloides/metabolismo , Complejos de Coordinación/química , Imidazoles/química , Modelos Moleculares
18.
Acc Chem Res ; 45(12): 2189-99, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23098254

RESUMEN

Living matter is the most elaborate, elegant, and complex hierarchical material known and is consequently the natural target for an ever-expanding scientific and technological effort to unlock and deconvolute its marvelous forms and functions. Our current understanding suggests that biological materials are derived from a bottom-up process, a spontaneous emergence of molecular networks in the course of chemical evolution. Polymer cooperation, so beautifully manifested in the ribosome, appeared in these dynamic networks, and the special physicochemical properties of the nucleic and amino acid polymers made possible the critical threshold for the emergence of extant cellular life. These properties include the precise and geometrically discrete hydrogen bonding patterns that dominate the complementary interactions of nucleic acid base-pairing that guide replication and ensure replication fidelity. In contrast, complex and highly context-dependent sets of intra- and intermolecular interactions guide protein folding. These diverse interactions allow the more analog environmental chemical potential fluctuations to dictate conformational template-directed propagation. When these two different strategies converged in the remarkable synergistic ribonucleoprotein that is the ribosome, this resulting molecular digital-to-analog converter achieved the capacity for both persistent information storage and adaptive responses to an ever-changing environment. The ancestral chemical networks that preceded the Central Dogma of Earth's biology must reflect the dynamic chemical evolutionary landscapes that allowed for selection, propagation, and diversification and ultimately the demarcation and specialization of function that modern biopolymers manifest. Not only should modern biopolymers contain molecular fossils of this earlier age, but it should be possible to use this information to reinvent these dynamic functional networks. In this Account, we review the first dynamic network created by modification of a nucleic acid backbone and show how it has exploited the digital-like base pairing for reversible polymer construction and information transfer. We further review how these lessons have been extended to the complex folding landscapes of templated peptide assembly. These insights have allowed for the construction of molecular hybrids of each biopolymer class and made possible the reimagining of chemical evolution. Such elaboration of biopolymer chimeras has already led to applications in therapeutics and diagnostics, to the construction of novel nanostructured materials, and toward orthogonal biochemical pathways that expand the evolution of existing biochemical systems. The ability to look beyond the primordial emergence of the ribosome may allow us to better define the origins of chemical evolution, to extend its horizons beyond the biology of today and ask whether evolution is an inherent property of matter unbounded by physical limitations imposed by our planet's diverse environments.


Asunto(s)
Evolución Química , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Biopolímeros/química , Biopolímeros/metabolismo , Simulación de Dinámica Molecular , Nucleótidos de Purina/química , Nucleótidos de Purina/metabolismo , Nucleósidos de Pirimidina/química , Nucleósidos de Pirimidina/metabolismo , Ribosomas/química , Ribosomas/metabolismo
19.
Biopolymers ; 100(6): 722-30, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23893572

RESUMEN

Vast arrays of structural forms are accessible to simple amyloid peptides and environmental conditions can direct assembly into single phases. These insights are now being applied to the aggregation of the Aß peptide of Alzheimer's disease and the identification of causative phases. We extend use of the imaging agent Pittsburgh compound B to discriminate among Aß phases and begin to define conditions of relevance to the disease state. Also, we specifically highlight the development of methods for defining the structures of these more complex phases.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Enfermedad de Alzheimer/metabolismo , Amiloide , Péptidos beta-Amiloides/metabolismo , Humanos , Enfermedades Neurodegenerativas , Fragmentos de Péptidos/metabolismo
20.
Langmuir ; 28(15): 6386-95, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22439620

RESUMEN

Recent evidence suggests that simple peptides can access diverse amphiphilic phases, and that these structures underlie the robust and widely distributed assemblies implicated in nearly 40 protein misfolding diseases. Here we exploit a minimal nucleating core of the Aß peptide of Alzheimer's disease to map its morphologically accessible phases that include stable intermolecular molten particles, fibers, twisted and helical ribbons, and nanotubes. Analyses with both fluorescence lifetime imaging microscopy (FLIM) and transmission electron microscopy provide evidence for liquid-liquid phase separations, similar to the coexisting dilute and dense protein-rich liquid phases so critical for the liquid-solid transition in protein crystallization. We show that the observed particles are critical for transitions to the more ordered cross-ß peptide phases, which are prevalent in all amyloid assemblies, and identify specific conditions that arrest assembly at the phase boundaries. We have identified a size dependence of the particles in order to transition to the para-crystalline phase and a width of the cross-ß assemblies that defines the transition between twisted fibers and helically coiled ribbons. These experimental results reveal an interconnected network of increasing molecularly ordered cross-ß transitions, greatly extending the initial computational models for cross-ß assemblies.


Asunto(s)
Péptidos beta-Amiloides/química , Fragmentos de Péptidos/química , Modelos Moleculares , Nanotubos/química , Pliegue de Proteína , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA